- 프로젝트 오타 수정
- 미사용 로직 제거
- 미사용 파일 제거
- MC9 등 변수명 수정
- 테스트 완료
main
Changwoo Park 2 years ago
parent 917c8a121e
commit 657ff89288

@ -1,8 +0,0 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
"version": "0.2.0",
"configurations": [
]
}

Binary file not shown.

@ -1,57 +0,0 @@
//Processes
String Prcss_ALL_Read();
String Prcss_DO_Write(unsigned int data[], int dataSize);
String Prcss_DI_Read();
String Prcss_AI_Read();
String Prcss_AO_Write(unsigned int data[], int dataSize);
String Prcss_PV_Read();
String Prcss_SV_Read();
String Prcss_SV_Write(unsigned int data[], int dataSize);
String Prcss_AT_Write(unsigned int data[], int dataSize);
String Prcss_RngAO(unsigned int data[], int dataSize);
String Prcss_ChMC9(unsigned int data[], int dataSize);
//Ethernet
void Ethernet_setup();
void webReponse();
String demuxCMD(String command, String* rightPart);
int demuxNum(String rightPart, unsigned int data[]);
//RS485
void RS485_setup();
void send_485();
int recieve_485();
void recieve_485_0();
//GPIO
void GPIO_setup();
void read_analog();
void read_digital();
//MC9
void setupMC9_1(int i, int data);
String msg_MC9_PV(int addr);
String msg_MC9_SV(int addr);
int saveMC9(String message);
int timeoutMC9();
int parseMC9(const String& message, int& addr, String& mode, int data[8], int& crc);
String sumMC9(String input);
//Utils
int write_buff_c(char* buff, char c);
int write_buff(char* buff, String str);
int write_buff_first(char* buff, String str);
String read_buff(char* buff);
// Periodics
void Periodic_run();
void timer_10ms();
// Analog_Out
void AO_setup(int i, int Rng);
void AO_Write(int i, int volt);
void timer_10ms();
int write_buff_c(char* buff, char c);

@ -0,0 +1,122 @@
#include "Arduino.h"
#include <MsTimer2.h> // MsTimer2 v1.1
#include <Ethernet2.h> // Ethernet2 v1.0.4
#include "GP8403.h"
/* ---------- Periodics ---------- */
// Flags
bool T_10ms = false;
bool T_20ms = false;
bool T_50ms = false;
bool T_100ms = false;
bool T_200ms = false;
bool T_500ms = false;
bool T_1000ms = false;
bool T_2000ms = false;
bool T_5000ms = false;
// Datas
int msCnt = 0;
unsigned long timer = 0;
/* ---------- Arduino Mega 2560 Basic IO ---------- */
// Pins
const int DoPin[] = { 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49};
const int DiPin[] = { 26, 27, 28, 29, 30, 31, 32, 33};
const int AiPin[] = { A0, A1, A2, A3, A4, A5, A6, A7,
A8, A9, A10, A11, A12, A13, A14, A15};
// Data Storages
int Size_DO = 16;
int Size_DI = 8;
int Size_AI = 16;
int Values_DI; // digit values to a number
int Values_AI[16];
/* ---------- I2C (Analog Output, DAC) ---------- */
// Addresses
DFRobot_GP8403 AO_0(&Wire,0x58);
DFRobot_GP8403 AO_2(&Wire,0x59);
DFRobot_GP8403 AO_4(&Wire,0x5A);
DFRobot_GP8403 AO_6(&Wire,0x5B);
DFRobot_GP8403 AO_8(&Wire,0x5C);
DFRobot_GP8403 AO_10(&Wire,0x5D);
DFRobot_GP8403 AO_12(&Wire,0x5E);
DFRobot_GP8403 AO_14(&Wire,0x5F);
// Data Storage
int RngAO[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
/* ---------- Ethernet (Ethernet Sheld2) ---------- */
// Ethernet Client
EthernetClient client;
// SCPI defaults to port 5025
EthernetServer server(5025);
// HTTP defaults to port 5025
EthernetServer web(80);
unsigned long lastDataReceivedTime;
unsigned long timeoutPeriod = 5000; // 이더넷 타임아웃 시간 (5초)
bool State_eth = false;
//Processes
String Prcss_ALL_Read();
String Prcss_DO_Write(unsigned int data[], int dataSize);
String Prcss_DI_Read();
String Prcss_AI_Read();
String Prcss_AO_Write(unsigned int data[], int dataSize);
String Prcss_PV_Read();
String Prcss_SV_Read();
String Prcss_SV_Write(unsigned int data[], int dataSize);
String Prcss_AT_Write(unsigned int data[], int dataSize);
String Prcss_RngAO(unsigned int data[], int dataSize);
String Prcss_ChMC9(unsigned int data[], int dataSize);
//Ethernet
void Ethernet_setup();
void webReponse();
String demuxCMD(String command, String* rightPart);
int demuxNum(String rightPart, unsigned int data[]);
//RS485
void RS485_setup();
void send_485();
int recieve_485();
void recieve_485_0();
//GPIO
void GPIO_setup();
void read_analog();
void read_digital();
//MC9
void setupMC9_1(int i, int data);
String msg_MC9_PV(int addr);
String msg_MC9_SV(int addr);
int saveMC9(String message);
int timeoutMC9();
int parseMC9(const String& message, int& addr, String& mode, int data[8], int& crc);
String sumMC9(String input);
//Utils
int write_buff_c(char* buff, char c);
int write_buff(char* buff, String str);
int write_buff_first(char* buff, String str);
String read_buff(char* buff);
// Periodics
void Periodic_run();
void timer_10ms();
// Analog_Out
void AO_setup(int i, int Rng);
void AO_Write(int i, int volt);
void timer_10ms();
int write_buff_c(char* buff, char c);

@ -1,11 +1,5 @@
#include "Arduino.h"
#include <MsTimer2.h> // Timer
#include <Ethernet2.h>
#include <avr/wdt.h> // ??
#include "Wire.h" // I2C
#include "DFRobot_GP8403.h"
#include "FC_InferfaceBoard.h"
#include "FC_InterfaceBoard.h"
#define CR "\r"
#define FIN "\n"
@ -14,73 +8,24 @@
#define RcvErr "ER\r"
#define MODE_DEBUG false
String IdeSerial;
String IdeSerial; // for 485_0
HardwareSerial* Serials[] = {&Serial1, &Serial2};
const int BUFF_SIZE = 512;
char Buff_Eth_Rd[BUFF_SIZE] = {0};
char Buff_485_Wr[BUFF_SIZE] = {0};
char Buff_485_Rd[BUFF_SIZE] = {0};
char Buff_485_1_Wr[BUFF_SIZE] = {0};
char Buff_485_1_Rd[BUFF_SIZE] = {0};
char Buff_485_2_Wr[BUFF_SIZE] = {0};
char Buff_485_2_Rd[BUFF_SIZE] = {0};
String latest_sent_msg;
int numOf485 = 0;
int returnTime = 0;
// ========== ========== Periodic Flags
bool T_10ms = false;
bool T_20ms = false;
bool T_50ms = false;
bool T_100ms = false;
bool T_200ms = false;
bool T_500ms = false;
bool T_1000ms = false;
bool T_2000ms = false;
bool T_5000ms = false;
// ========== ========== Communication
// ---------- Ethernet
// Ethernet Client
EthernetClient client;
// SCPI defaults to port 5025
EthernetServer server(5025);
// HTTP defaults to port 5025
EthernetServer web(80);
unsigned long lastDataReceivedTime;
unsigned long timeoutPeriod = 5000; // 이더넷 타임아웃 시간 (5초)
bool State_eth = false;
// ---------- 485
String Buf_485;
bool Wait_485;
int Wait_485_cnt;
// ---------- I2C (Analog Output, DAC)
DFRobot_GP8403 AO_0(&Wire,0x58);
DFRobot_GP8403 AO_2(&Wire,0x59);
DFRobot_GP8403 AO_4(&Wire,0x5A);
DFRobot_GP8403 AO_6(&Wire,0x5B);
DFRobot_GP8403 AO_8(&Wire,0x5C);
DFRobot_GP8403 AO_10(&Wire,0x5D);
DFRobot_GP8403 AO_12(&Wire,0x5E);
DFRobot_GP8403 AO_14(&Wire,0x5F);
int voltOffset = 0;//185;
int RngAO[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// ========== ========== Processing
// Read Datas
const int DoPin[] = { 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49};
const int DiPin[] = { 26, 27, 28, 29, 30, 31, 32, 33};
const int AiPin[] = { A0, A1, A2, A3, A4, A5, A6, A7,
A8, A9, A10, A11, A12, A13, A14, A15};
int Size_DO = 16;
int Size_DI = 8;
int Values_DI;
int Size_AI = 16;
int Values_AI[16];
bool Wait_485_1;
int Wait_485_1_cnt;
int RS485_1_Addr[2] = {0,0};
bool RS485_1_Rcv_PV[2] = {false, false};
@ -89,25 +34,24 @@ int RS485_1_Rcv_size = 8;
int RS485_1_Values_PV[8*2];
int RS485_1_Values_SV[8*2];
/*
bool Wait_485_2;
int Wait_485_2_cnt;
int RS485_2_Addr[2];
bool RS485_2_Rcv_PV[2];
bool RS485_2_Rcv_SV[2];
int RS485_2_Rcv_size = 8*2;
int RS485_2_Rcv_size = 8;
int RS485_2_Values_PV[8*2];
int RS485_2_Values_SV[8*2];
*/
bool rcv_10_PV = true;
int Size_PV = 8;
int Values_10_PV[8];
bool rcv_10_SV = true;
int Size_SV = 8;
int Values_10_SV[8];
//bool rcv_10_PV = true;
//int Size_PV = 8;
//int Values_10_PV[8];
int msCnt = 0;
unsigned long timer = 0;
//bool rcv_10_SV = true;
//int Size_SV = 8;
//int Values_10_SV[8];
void setup() {
// put your setup code here, to run once:
@ -117,15 +61,12 @@ void setup() {
// modules setup (init.)
Ethernet_setup();
GPIO_setup();
//MC9_setup();
RS485_setup();
//GP8403_setup();
// Timer set
MsTimer2::set(10, timer_10ms);
MsTimer2::start();
}
void loop() {
@ -186,43 +127,27 @@ void loop() {
client.print(Prcss_AO_Write(data, dataSize));
}
// MC9
else if(cmd=="SV!"){
else if(cmd=="SV_1!"){
dataSize = demuxNum(cmdData, data);
client.print(Prcss_SV_Write(data, dataSize));
}else if(cmd=="AT!"){
}else if(cmd=="AT_1!"){
dataSize = demuxNum(cmdData, data);
client.print(Prcss_AT_Write(data, dataSize));
}
/*
else if(cmd=="ATon!"){
client.print(Prcss_AT_Write(true));
}else if(cmd=="AToff!"){
client.print(Prcss_AT_Write(false));
}
*/
// Init
else if(cmd=="State?"){
}else if(cmd=="RngAO!"){
dataSize = demuxNum(cmdData, data);
client.print(Prcss_RngAO(data, dataSize));
}else if(cmd=="ChMC9!"){
}else if(cmd=="ChMC9_1!"){
dataSize = demuxNum(cmdData, data);
client.print(Prcss_ChMC9(data, dataSize));
}
// Extra
else if(cmd=="AT!"){
dataSize = demuxNum(cmdData, data);
client.print("");
}
//else if(cmd==""){
//}
else{
client.print(cmd + " " + RcvErr + FIN);
}

@ -12,6 +12,9 @@
#ifndef _DFROBOT_GP8403_H_
#define _DFROBOT_GP8403_H
#ifndef TwoWire_h
#include "Wire.h"
#endif
#define GP8302_STORE_TIMING_HEAD 0x02 ///< Store function timing start head
#define GP8302_STORE_TIMING_ADDR 0x10 ///< The first address for entering store timing

@ -30,7 +30,7 @@ void DFRobot_GP8403::setDACOutRange(eOutPutRange_t range)
}
void DFRobot_GP8403::setDACOutVoltage(uint16_t data, uint8_t channel)
{
uint16_t dataTransmission = (uint16_t)(((float)data / (voltage + voltOffset)) * 4095);
uint16_t dataTransmission = (uint16_t)(((float)data / voltage) * 4095);
DBG(dataTransmission);
dataTransmission = dataTransmission << 4;
sendData(dataTransmission,channel);

@ -1,3 +1,4 @@
const int MC9_CH[] = {1000, 1008, 1016, 1024, 1100, 1108, 1116, 1124};
// 10DWR,02,0302,0001,0501,0001
@ -13,10 +14,10 @@ String msg_MC9_PV(int addr){
if(addr < 10){
message += "0";
}
message += String(addr);
message += "DRS,08,0001";
message += sumMC9(message);
message = "" + message;
message += String(addr); // Address
message += "DRS,08,0001"; // Data Read Seris 08 data from 0001(PV) ch
message += sumMC9(message); // Check Sum
message = "" + message; // Start with STX
return message;
}
@ -27,10 +28,10 @@ String msg_MC9_SV(int addr){
if(addr < 10){
message += "0";
}
message += String(addr);
message += "DRS,08,0011";
message += sumMC9(message);
message = "" + message;
message += String(addr); // Address
message += "DRS,08,0011"; // Data Read Seris 08 data from 0001(SV) ch
message += sumMC9(message); // Check Sum
message = "" + message; // Start with STX
return message;
}
@ -42,13 +43,6 @@ int msg_MC9_SV_set(unsigned int data[], int dataSize){
if(dataSize > 8){
lp0 = 8;
lp1 = dataSize;
/*
if(dataSize==16){
lp1 = 8;
}else{
lp1 = dataSize%8;
}
*/
}else{
lp0 = dataSize;
lp1 = 0;
@ -73,7 +67,7 @@ int msg_MC9_SV_set(unsigned int data[], int dataSize){
}
message += sumMC9(message);
message = "" + message + CRLF;
write_buff_first(Buff_485_Wr, message);
write_buff_first(Buff_485_1_Wr, message);
}
if((RS485_1_Addr[1] != 0) && (lp1>0)){
@ -95,7 +89,7 @@ int msg_MC9_SV_set(unsigned int data[], int dataSize){
}
message += sumMC9(message);
message = "" + message + CRLF;
write_buff_first(Buff_485_Wr, message);
write_buff_first(Buff_485_1_Wr, message);
}
return 0;
@ -107,6 +101,7 @@ int msg_MC9_AT_set(unsigned int data[], int dataSize){
int lp0, lp1;
// Number to boolean array
unsigned int data0 = data[0];
for (int i = 0; i < 16; i++) {
at[i] = (bitRead(data0, i) ? HIGH : LOW);
@ -125,9 +120,9 @@ int msg_MC9_AT_set(unsigned int data[], int dataSize){
for(int i=0 ; i<8 ; i++){
String atFlag;
if(at[i]){
atFlag = "0001";
atFlag = "0001"; // Auto Tuen On
}else{
atFlag = "0000";
atFlag = "0000"; // Auto Tuen Off
}
message += "0302,"; // Ch No cmd.
@ -140,7 +135,7 @@ int msg_MC9_AT_set(unsigned int data[], int dataSize){
}
message += sumMC9(message);
message = "" + message + CRLF;
write_buff_first(Buff_485_Wr, message);
write_buff_first(Buff_485_1_Wr, message);
}
message = "";
@ -168,7 +163,7 @@ int msg_MC9_AT_set(unsigned int data[], int dataSize){
}
message += sumMC9(message);
message = "" + message + CRLF;
write_buff_first(Buff_485_Wr, message);
write_buff_first(Buff_485_1_Wr, message);
}
return 0;
@ -181,9 +176,8 @@ int saveMC9(String message){
int data[8];
int crc;
if (parseMC9(message, addr, mode, data, crc)) {
if (!parseMC9(message, addr, mode, data, crc)) {
for(int i=0 ; i < 2 ; i++){ // RS485_1 has two rooms for two MC9s
if(RS485_1_Addr[i] == addr){
idx = i;
break;
@ -196,6 +190,7 @@ int saveMC9(String message){
if(latest_sent_msg.indexOf("DRS,08,0001") != -1){ // if sent message is PV CMD
//rcv_10_PV = true;
RS485_1_Rcv_PV[idx] = true;
for(int i = 0 ; i < RS485_1_Rcv_size ; i++){
RS485_1_Values_PV[i + idx*8] = data[i];
}
@ -203,23 +198,65 @@ int saveMC9(String message){
if(latest_sent_msg.indexOf("DRS,08,0011") != -1){ // if sent message is SV CMD
//rcv_10_SV = true;
RS485_1_Rcv_SV[idx] = true;
for(int i = 0 ; i < RS485_1_Rcv_size ; i++){
RS485_1_Values_SV[i + idx*8] = data[i];
}
}
return 1;
return 0;
} else {
Serial.println("error 485 read");
return 0;
return -1;
}
}
int timeoutMC9(){
int addr;
String mode;
int idx = -1;
String msg, mode, cmd;
char dummy[4];
int data[8];
int crc;
// Message parsing
msg = latest_sent_msg.substring(1);
sscanf(msg.c_str(), "%2d%3s", &addr, &dummy);
Serial.print("485 not responced... (Timeout) Req msg : " + latest_sent_msg);
if (latest_sent_msg.indexOf("DRS") != -1) {
for(int i=0 ; i < 2 ; i++){ // RS485_1 has two rooms for two MC9s
// Find idx of array
if(RS485_1_Addr[i] == addr){
idx = i;
break;
}
}
// If not matched, return error
if(idx < 0){
Serial.println();
return -1;
}
if(latest_sent_msg.indexOf("DRS,08,0001") != -1){ // if sent message is PV CMD
RS485_1_Rcv_PV[idx] = false;
Serial.print(" >> PV @");
Serial.println(idx);
}
if(latest_sent_msg.indexOf("DRS,08,0011") != -1){ // if sent message is SV CMD
RS485_1_Rcv_SV[idx] = false;
Serial.print(" >> SV @");
Serial.println(idx);
}
return 0;
} else {
Serial.println();
return -1;
}
/*
if(latest_sent_msg == MC9_10_PV){
@ -229,29 +266,31 @@ int timeoutMC9(){
//rcv_10_SV = false;
}else {
Serial.println("error 485 read");
return 0;
Serial.println("error 485 read");
return -1;
}
*/
return 1;
}
int parseMC9(const String& message, int& addr, String& mode, int data[8], int& crc) {
char addrC[3], modeC[4], statusC[3];
int dataC[8], crcC;
// Remove start-of-text character if present
if (message[0] == '\x02') {
message = message.substring(1);
}
// Parse the MC9 message
int ret = sscanf(message.c_str(), "%2s%3s,%2s,%4x,%4x,%4x,%4x,%4x,%4x,%4x,%4x%2x",
addrC, modeC, statusC, &dataC[0], &dataC[1], &dataC[2], &dataC[3], &dataC[4], &dataC[5], &dataC[6], &dataC[7], &crcC);
// Check the parsed status and the number of extracted elements
if (strcmp(statusC, "OK") != 0 || ret != 12) {
return 0;
return -1;
}
// copy data
// Copy data to the output parameters
addr = atoi(addrC);
mode = String(modeC);
for (int i = 0; i < 8; i++) {
@ -259,16 +298,19 @@ int parseMC9(const String& message, int& addr, String& mode, int data[8], int& c
}
crc = crcC;
return 1;
return 0;
}
String sumMC9(String input) {
int sum = 0;
for (char c : input) {
sum += c;
}
sum = sum & 0xFF; // Make sure we only keep the least significant byte
String hexSum = String(sum, HEX); // Convert the sum to hexadecimal
hexSum.toUpperCase(); // Make it upper-case
return hexSum;
}

@ -4,11 +4,13 @@ void Periodic_run(){
T_10ms = false;
}
if(T_20ms){
send_485(); // RS485 send
recieve_485(); // RS485 recieve
// send and recieve RS485
send_485();
recieve_485();
T_20ms = false;
}
if(T_50ms){
// Read Arduino Inputs
read_analog();
read_digital();
T_50ms = false;
@ -22,36 +24,33 @@ void Periodic_run(){
T_200ms = false;
}
if(T_500ms){
recieve_485_0(); // RS485 recieve (for developing)
// RS485 recieve (for developing)
recieve_485_0();
T_500ms = false;
}
if(T_1000ms){
//write_buff(Buff_485_Wr, MC9_10_PV); // 10 DRS num 8 from ch1 PV
for(int i=0 ; i < 2 ; i++){ // RS485_1 has two rooms for two MC9s
if(RS485_1_Addr[i] > 0){ // If there is address
write_buff(Buff_485_Wr, msg_MC9_PV(RS485_1_Addr[i])); // write buff to send PV Req.
// Read MC9 PV
for(int i=0 ; i < 2 ; i++){
if(RS485_1_Addr[i] > 0){
write_buff(Buff_485_1_Wr, msg_MC9_PV(RS485_1_Addr[i]));
}
}
//write_buff(Buff_485_Wr, msg_MC9_PV(10));
T_1000ms = false;
}
if(T_2000ms){
if(numOf485 > 5){
if(numOf485 > 0){
Serial.print("----- remain 485 buff : "); // For
Serial.println(numOf485); // Debugging
}
T_2000ms = false;
}
if(T_5000ms){
//write_buff(Buff_485_Wr, MC9_10_SV); // 10 DRS num 8 from ch1 SV
for(int i=0 ; i < 2 ; i++){ // RS485_1 has two rooms for two MC9s
if(RS485_1_Addr[i] > 0){ // If there is address
write_buff(Buff_485_Wr, msg_MC9_SV(RS485_1_Addr[i])); // write buff to send SV Req.
// Read MC9 SV
for(int i=0 ; i < 2 ; i++){
if(RS485_1_Addr[i] > 0){
write_buff(Buff_485_1_Wr, msg_MC9_SV(RS485_1_Addr[i]));
}
}
//write_buff(Buff_485_Wr, msg_MC9_SV(10));
T_5000ms = false;
}
}

@ -17,31 +17,29 @@ String Prcss_ALL_Read(){
str += ',';
str += RcvOK;
str += "PV_0?:";
if(rcv_10_PV){
for (int i = 0; i < RS485_1_Rcv_size*2; i++) {
char formattedNumber[5];
sprintf(formattedNumber, "%04X", RS485_1_Values_PV[i]);
str += formattedNumber;
str += ',';
}
str += RcvOK;
}else{
str += RcvErr;
str += "PV_1?:";
for (int i = 0; i < RS485_1_Rcv_size*2; i++) {
char formattedNumber[5];
int rcv = int(RS485_1_Rcv_PV[i/RS485_1_Rcv_size]);
sprintf(formattedNumber, "%04X", RS485_1_Values_PV[i] * rcv);
str += formattedNumber;
str += ',';
}
str += RcvOK;
str += "SV_0?:";
if(rcv_10_SV){
for (int i = 0; i < RS485_1_Rcv_size*2; i++) {
char formattedNumber[5];
sprintf(formattedNumber, "%04X", RS485_1_Values_SV[i]);
str += formattedNumber;
str += ',';
}
str += RcvOK;
}else{
str += RcvErr;
str += "SV_1?:";
for (int i = 0; i < RS485_1_Rcv_size*2; i++) {
char formattedNumber[5];
int rcv = int(RS485_1_Rcv_SV[i/RS485_1_Rcv_size]);
sprintf(formattedNumber, "%04X", RS485_1_Values_SV[i] * rcv);
str += formattedNumber;
str += ',';
}
str += RcvOK;
return str + FIN;
}

@ -1,4 +1,6 @@
#define RS485_OE_1 22 //RS485 CH#1 Output Enable => pin 22 for CH#1
#define RS485_OE_2 23 //RS485 CH#2 Output Enable => pin 23 for CH#2
#define Snd_485 HIGH
#define Rcv_485 LOW
@ -8,12 +10,17 @@ void RS485_setup(){
pinMode(RS485_OE_1, OUTPUT);
delay(10);
digitalWrite(RS485_OE_1, Rcv_485);
Serial2.setTimeout(300);
Serial2.begin(9600);
pinMode(RS485_OE_2, OUTPUT);
delay(10);
digitalWrite(RS485_OE_2, Rcv_485);
}
void send_485(){
if(!Wait_485){
String message = read_buff(Buff_485_Wr);
if(!Wait_485_1){
String message = read_buff(Buff_485_1_Wr);
if(message != ""){
//save sent message info. for received data processing
@ -26,22 +33,19 @@ void send_485(){
Serial1.flush();
digitalWrite(RS485_OE_1, Rcv_485); delay(5);
Wait_485 = true;
Wait_485_cnt = 0;
}
else{
//Serial.println("Free");
Wait_485_1 = true;
Wait_485_1_cnt = 0;
}
}
}
int recieve_485(){
// Timeout code
if(Wait_485){
Wait_485_cnt++;
if(Wait_485_cnt > 25){ // Timeout = periodic(20ms) x 25 = 500 msec
Serial.println("485 not responced... (Timeout)");
if(Wait_485_1){
Wait_485_1_cnt++;
if(Wait_485_1_cnt > 25){ // Timeout = periodic(20ms) x 25 = 500 msec
//Serial.println("485 not responced... (Timeout)");
timeoutMC9();
//if((latest_sent_msg == MC9_10_PV) ||(latest_sent_msg == MC9_10_SV)){
/*
@ -50,8 +54,8 @@ int recieve_485(){
}
*/
latest_sent_msg = "";
Wait_485 = false;
Wait_485_cnt = 0;
Wait_485_1 = false;
Wait_485_1_cnt = 0;
numOf485--;
@ -59,12 +63,12 @@ int recieve_485(){
}
}
// Receive pv data
while(Wait_485 && (Serial1.available() > 0)) {
while(Wait_485_1 && (Serial1.available() > 0)) {
char c = Serial1.read();
write_buff_c(Buff_485_Rd, c);
write_buff_c(Buff_485_1_Rd, c);
}
String message = read_buff(Buff_485_Rd);
String message = read_buff(Buff_485_1_Rd);
if(message != ""){
numOf485--;
if(latest_sent_msg.indexOf("DRS") != -1){
@ -74,8 +78,8 @@ int recieve_485(){
Serial.print("----- 485 rcv : ");
Serial.println(message);
}
Wait_485 = false;
Wait_485_cnt = 0;
Wait_485_1 = false;
Wait_485_1_cnt = 0;
}
return 0;
@ -84,7 +88,6 @@ int recieve_485(){
/* For Test from PC */
void recieve_485_0(){
// Receive pv data
while(Serial.available() > 0) {
char c = Serial.read();
IdeSerial += c;
@ -95,7 +98,7 @@ void recieve_485_0(){
IdeSerial += sumMC9(IdeSerial);
IdeSerial = "" + IdeSerial + CRLF;
write_buff_first(Buff_485_Wr, IdeSerial);
write_buff_first(Buff_485_1_Wr, IdeSerial);
IdeSerial = "";
}
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

@ -1,33 +0,0 @@
---------------
DHCP.cpp
// DHCP Library v0.3 - April 25, 2009
// Author: Jordan Terrell - blog.jordanterrell.com
---------------
DNS.cpp
// Arduino DNS client for WizNet5100-based Ethernet shield
// (c) Copyright 2009-2010 MCQN Ltd.
// Released under Apache License, version 2.0
---------------
Ethernet2:
modified 12 Aug 2013
by Soohwan Kim (suhwan@wiznet.co.kr)
---------------
UDP.cpp: bjoern@cs.stanford.edu 12/30/2008
---------------
Twitter.cpp - Arduino library to Post messages to Twitter using OAuth.
Copyright (c) NeoCat 2010-2011. All right reserved.
---------------
Wiz5500.cpp
Copyright (c) 2010 by WIZnet <support@wiznet.co.kr>
--------------
Various by Arduino.org team

@ -1,42 +0,0 @@
Ethernet "2" Library for Arduino
================================
This Arduino library is for shields that use the **Wiznet [W5500]** chipset only.
It does **not** work with other chipsets, such as the original Arduino Ethernet shield which
uses the Wiznet [W5100] chipset.
For more information about this library please visit us at:
http://www.arduino.cc/en/Reference/Ethernet
W5500 Shields
-------------
* [Adafruit W5500 Ethernet Shield](https://www.adafruit.com/products/2971)
* [Arduino Ethernet Shield v2](https://www.arduino.cc/en/Main/ArduinoEthernetShieldV2)
* [Industruino Ethernet module](https://industruino.com/shop/product/ethernet-expansion-module-10)
* [Wiznet W5500 Ethernet Shield](http://www.wiznet.co.kr/product-item/w5500-ethernet-shield/)
License
-------
Copyright (c) 2009-2016 Arduino LLC. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
[W5100]: http://www.wiznet.co.kr/product-item/w5100/
[W5500]: http://www.wiznet.co.kr/product-item/w5500/

@ -1,108 +0,0 @@
/*
Advanced Chat Server
A more advanced server that distributes any incoming messages
to all connected clients but the client the message comes from.
To use telnet to your device's IP address and type.
You can see the client's input in the serial monitor as well.
Using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
* Analog inputs attached to pins A0 through A5 (optional)
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe
redesigned to make use of operator== 25 Nov 2013
by Norbert Truchsess
*/
#include <SPI.h>
#include <Ethernet2.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network.
// gateway and subnet are optional:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192,168,1, 177);
IPAddress gateway(192,168,1, 1);
IPAddress subnet(255, 255, 0, 0);
// telnet defaults to port 23
EthernetServer server(23);
EthernetClient clients[4];
void setup() {
// initialize the ethernet device
Ethernet.begin(mac, ip, gateway, subnet);
// start listening for clients
server.begin();
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.print("Chat server address:");
Serial.println(Ethernet.localIP());
}
void loop() {
// wait for a new client:
EthernetClient client = server.available();
// when the client sends the first byte, say hello:
if (client) {
boolean newClient = true;
for (byte i=0;i<4;i++) {
//check whether this client refers to the same socket as one of the existing instances:
if (clients[i]==client) {
newClient = false;
break;
}
}
if (newClient) {
//check which of the existing clients can be overridden:
for (byte i=0;i<4;i++) {
if (!clients[i] && clients[i]!=client) {
clients[i] = client;
// clead out the input buffer:
client.flush();
Serial.println("We have a new client");
client.print("Hello, client number: ");
client.print(i);
client.println();
break;
}
}
}
if (client.available() > 0) {
// read the bytes incoming from the client:
char thisChar = client.read();
// echo the bytes back to all other connected clients:
for (byte i=0;i<4;i++) {
if (clients[i] && (clients[i]!=client)) {
clients[i].write(thisChar);
}
}
// echo the bytes to the server as well:
Serial.write(thisChar);
}
}
for (byte i=0;i<4;i++) {
if (!(clients[i].connected())) {
// client.stop() invalidates the internal socket-descriptor, so next use of == will allways return false;
clients[i].stop();
}
}
}

@ -1,223 +0,0 @@
/*
SCP1000 Barometric Pressure Sensor Display
Serves the output of a Barometric Pressure Sensor as a web page.
Uses the SPI library. For details on the sensor, see:
http://www.sparkfun.com/commerce/product_info.php?products_id=8161
http://www.vti.fi/en/support/obsolete_products/pressure_sensors/
This sketch adapted from Nathan Seidle's SCP1000 example for PIC:
http://www.sparkfun.com/datasheets/Sensors/SCP1000-Testing.zip
Circuit:
SCP1000 sensor attached to pins 6,7, and 11 - 13:
DRDY: pin 6
CSB: pin 7
MOSI: pin 11
MISO: pin 12
SCK: pin 13
created 31 July 2010
by Tom Igoe
*/
#include <Ethernet2.h>
// the sensor communicates using SPI, so include the library:
#include <SPI.h>
// assign a MAC address for the ethernet controller.
// fill in your address here:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
// assign an IP address for the controller:
IPAddress ip(192, 168, 1, 20);
IPAddress gateway(192, 168, 1, 1);
IPAddress subnet(255, 255, 255, 0);
// Initialize the Ethernet server library
// with the IP address and port you want to use
// (port 80 is default for HTTP):
EthernetServer server(80);
//Sensor's memory register addresses:
const int PRESSURE = 0x1F; //3 most significant bits of pressure
const int PRESSURE_LSB = 0x20; //16 least significant bits of pressure
const int TEMPERATURE = 0x21; //16 bit temperature reading
// pins used for the connection with the sensor
// the others you need are controlled by the SPI library):
const int dataReadyPin = 6;
const int chipSelectPin = 7;
float temperature = 0.0;
long pressure = 0;
long lastReadingTime = 0;
void setup() {
// start the SPI library:
SPI.begin();
// start the Ethernet connection and the server:
Ethernet.begin(mac, ip);
server.begin();
// initalize the data ready and chip select pins:
pinMode(dataReadyPin, INPUT);
pinMode(chipSelectPin, OUTPUT);
Serial.begin(9600);
//Configure SCP1000 for low noise configuration:
writeRegister(0x02, 0x2D);
writeRegister(0x01, 0x03);
writeRegister(0x03, 0x02);
// give the sensor and Ethernet shield time to set up:
delay(1000);
//Set the sensor to high resolution mode tp start readings:
writeRegister(0x03, 0x0A);
}
void loop() {
// check for a reading no more than once a second.
if (millis() - lastReadingTime > 1000) {
// if there's a reading ready, read it:
// don't do anything until the data ready pin is high:
if (digitalRead(dataReadyPin) == HIGH) {
getData();
// timestamp the last time you got a reading:
lastReadingTime = millis();
}
}
// listen for incoming Ethernet connections:
listenForEthernetClients();
}
void getData() {
Serial.println("Getting reading");
//Read the temperature data
int tempData = readRegister(0x21, 2);
// convert the temperature to celsius and display it:
temperature = (float)tempData / 20.0;
//Read the pressure data highest 3 bits:
byte pressureDataHigh = readRegister(0x1F, 1);
pressureDataHigh &= 0b00000111; //you only needs bits 2 to 0
//Read the pressure data lower 16 bits:
unsigned int pressureDataLow = readRegister(0x20, 2);
//combine the two parts into one 19-bit number:
pressure = ((pressureDataHigh << 16) | pressureDataLow) / 4;
Serial.print("Temperature: ");
Serial.print(temperature);
Serial.println(" degrees C");
Serial.print("Pressure: " + String(pressure));
Serial.println(" Pa");
}
void listenForEthernetClients() {
// listen for incoming clients
EthernetClient client = server.available();
if (client) {
Serial.println("Got a client");
// an http request ends with a blank line
boolean currentLineIsBlank = true;
while (client.connected()) {
if (client.available()) {
char c = client.read();
// if you've gotten to the end of the line (received a newline
// character) and the line is blank, the http request has ended,
// so you can send a reply
if (c == '\n' && currentLineIsBlank) {
// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
// print the current readings, in HTML format:
client.print("Temperature: ");
client.print(temperature);
client.print(" degrees C");
client.println("<br />");
client.print("Pressure: " + String(pressure));
client.print(" Pa");
client.println("<br />");
break;
}
if (c == '\n') {
// you're starting a new line
currentLineIsBlank = true;
}
else if (c != '\r') {
// you've gotten a character on the current line
currentLineIsBlank = false;
}
}
}
// give the web browser time to receive the data
delay(1);
// close the connection:
client.stop();
}
}
//Send a write command to SCP1000
void writeRegister(byte registerName, byte registerValue) {
// SCP1000 expects the register name in the upper 6 bits
// of the byte:
registerName <<= 2;
// command (read or write) goes in the lower two bits:
registerName |= 0b00000010; //Write command
// take the chip select low to select the device:
digitalWrite(chipSelectPin, LOW);
SPI.transfer(registerName); //Send register location
SPI.transfer(registerValue); //Send value to record into register
// take the chip select high to de-select:
digitalWrite(chipSelectPin, HIGH);
}
//Read register from the SCP1000:
unsigned int readRegister(byte registerName, int numBytes) {
byte inByte = 0; // incoming from the SPI read
unsigned int result = 0; // result to return
// SCP1000 expects the register name in the upper 6 bits
// of the byte:
registerName <<= 2;
// command (read or write) goes in the lower two bits:
registerName &= 0b11111100; //Read command
// take the chip select low to select the device:
digitalWrite(chipSelectPin, LOW);
// send the device the register you want to read:
int command = SPI.transfer(registerName);
// send a value of 0 to read the first byte returned:
inByte = SPI.transfer(0x00);
result = inByte;
// if there's more than one byte returned,
// shift the first byte then get the second byte:
if (numBytes > 1) {
result = inByte << 8;
inByte = SPI.transfer(0x00);
result = result | inByte;
}
// take the chip select high to de-select:
digitalWrite(chipSelectPin, HIGH);
// return the result:
return(result);
}

@ -1,80 +0,0 @@
/*
Chat Server
A simple server that distributes any incoming messages to all
connected clients. To use telnet to your device's IP address and type.
You can see the client's input in the serial monitor as well.
Using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
* Analog inputs attached to pins A0 through A5 (optional)
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe
*/
#include <SPI.h>
#include <Ethernet2.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network.
// gateway and subnet are optional:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
IPAddress gateway(192, 168, 1, 1);
IPAddress subnet(255, 255, 0, 0);
// telnet defaults to port 23
EthernetServer server(23);
boolean alreadyConnected = false; // whether or not the client was connected previously
void setup() {
// initialize the ethernet device
Ethernet.begin(mac, ip, gateway, subnet);
// start listening for clients
server.begin();
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.print("Chat server address:");
Serial.println(Ethernet.localIP());
}
void loop() {
// wait for a new client:
EthernetClient client = server.available();
// when the client sends the first byte, say hello:
if (client) {
if (!alreadyConnected) {
// clead out the input buffer:
client.flush();
Serial.println("We have a new client");
client.println("Hello, client!");
alreadyConnected = true;
}
if (client.available() > 0) {
// read the bytes incoming from the client:
char thisChar = client.read();
// echo the bytes back to the client:
server.write(thisChar);
// echo the bytes to the server as well:
Serial.write(thisChar);
}
}
}

@ -1,60 +0,0 @@
/*
DHCP-based IP printer
This sketch uses the DHCP extensions to the Ethernet library
to get an IP address via DHCP and print the address obtained.
using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 12 April 2011
modified 9 Apr 2012
by Tom Igoe
*/
#include <SPI.h>
#include <Ethernet2.h>
// Enter a MAC address for your controller below.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
byte mac[] = {
0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02
};
// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 80 is default for HTTP):
EthernetClient client;
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
// this check is only needed on the Leonardo:
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// no point in carrying on, so do nothing forevermore:
for (;;)
;
}
// print your local IP address:
Serial.print("My IP address: ");
for (byte thisByte = 0; thisByte < 4; thisByte++) {
// print the value of each byte of the IP address:
Serial.print(Ethernet.localIP()[thisByte], DEC);
Serial.print(".");
}
Serial.println();
}
void loop() {
}

@ -1,88 +0,0 @@
/*
DHCP Chat Server
A simple server that distributes any incoming messages to all
connected clients. To use telnet to your device's IP address and type.
You can see the client's input in the serial monitor as well.
Using an Arduino Wiznet Ethernet shield.
THis version attempts to get an IP address using DHCP
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 21 May 2011
modified 9 Apr 2012
by Tom Igoe
Based on ChatServer example by David A. Mellis
*/
#include <SPI.h>
#include <Ethernet2.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network.
// gateway and subnet are optional:
byte mac[] = {
0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02
};
IPAddress ip(192, 168, 1, 177);
IPAddress gateway(192, 168, 1, 1);
IPAddress subnet(255, 255, 0, 0);
// telnet defaults to port 23
EthernetServer server(23);
boolean gotAMessage = false; // whether or not you got a message from the client yet
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
// this check is only needed on the Leonardo:
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection:
Serial.println("Trying to get an IP address using DHCP");
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// initialize the ethernet device not using DHCP:
Ethernet.begin(mac, ip, gateway, subnet);
}
// print your local IP address:
Serial.print("My IP address: ");
ip = Ethernet.localIP();
for (byte thisByte = 0; thisByte < 4; thisByte++) {
// print the value of each byte of the IP address:
Serial.print(ip[thisByte], DEC);
Serial.print(".");
}
Serial.println();
// start listening for clients
server.begin();
}
void loop() {
// wait for a new client:
EthernetClient client = server.available();
// when the client sends the first byte, say hello:
if (client) {
if (!gotAMessage) {
Serial.println("We have a new client");
client.println("Hello, client!");
gotAMessage = true;
}
// read the bytes incoming from the client:
char thisChar = client.read();
// echo the bytes back to the client:
server.write(thisChar);
// echo the bytes to the server as well:
Serial.print(thisChar);
}
}

@ -1,94 +0,0 @@
/*
Telnet client
This sketch connects to a a telnet server (http://www.google.com)
using an Arduino Wiznet Ethernet shield. You'll need a telnet server
to test this with.
Processing's ChatServer example (part of the network library) works well,
running on port 10002. It can be found as part of the examples
in the Processing application, available at
http://processing.org/
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 14 Sep 2010
modified 9 Apr 2012
by Tom Igoe
*/
#include <SPI.h>
#include <Ethernet2.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
// Enter the IP address of the server you're connecting to:
IPAddress server(1, 1, 1, 1);
// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 23 is default for telnet;
// if you're using Processing's ChatServer, use port 10002):
EthernetClient client;
void setup() {
// start the Ethernet connection:
Ethernet.begin(mac, ip);
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// give the Ethernet shield a second to initialize:
delay(1000);
Serial.println("connecting...");
// if you get a connection, report back via serial:
if (client.connect(server, 10002)) {
Serial.println("connected");
}
else {
// if you didn't get a connection to the server:
Serial.println("connection failed");
}
}
void loop()
{
// if there are incoming bytes available
// from the server, read them and print them:
if (client.available()) {
char c = client.read();
Serial.print(c);
}
// as long as there are bytes in the serial queue,
// read them and send them out the socket if it's open:
while (Serial.available() > 0) {
char inChar = Serial.read();
if (client.connected()) {
client.print(inChar);
}
}
// if the server's disconnected, stop the client:
if (!client.connected()) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
// do nothing:
while (true);
}
}

@ -1,119 +0,0 @@
/*
UDPSendReceive.pde:
This sketch receives UDP message strings, prints them to the serial port
and sends an "acknowledge" string back to the sender
A Processing sketch is included at the end of file that can be used to send
and received messages for testing with a computer.
created 21 Aug 2010
by Michael Margolis
This code is in the public domain.
*/
#include <SPI.h> // needed for Arduino versions later than 0018
#include <Ethernet2.h>
#include <EthernetUdp2.h> // UDP library from: bjoern@cs.stanford.edu 12/30/2008
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
unsigned int localPort = 8888; // local port to listen on
// buffers for receiving and sending data
char packetBuffer[UDP_TX_PACKET_MAX_SIZE]; //buffer to hold incoming packet,
char ReplyBuffer[] = "acknowledged"; // a string to send back
// An EthernetUDP instance to let us send and receive packets over UDP
EthernetUDP Udp;
void setup() {
// start the Ethernet and UDP:
Ethernet.begin(mac, ip);
Udp.begin(localPort);
Serial.begin(9600);
}
void loop() {
// if there's data available, read a packet
int packetSize = Udp.parsePacket();
if (packetSize)
{
Serial.print("Received packet of size ");
Serial.println(packetSize);
Serial.print("From ");
IPAddress remote = Udp.remoteIP();
for (int i = 0; i < 4; i++)
{
Serial.print(remote[i], DEC);
if (i < 3)
{
Serial.print(".");
}
}
Serial.print(", port ");
Serial.println(Udp.remotePort());
// read the packet into packetBufffer
Udp.read(packetBuffer, UDP_TX_PACKET_MAX_SIZE);
Serial.println("Contents:");
Serial.println(packetBuffer);
// send a reply, to the IP address and port that sent us the packet we received
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
Udp.write(ReplyBuffer);
Udp.endPacket();
}
delay(10);
}
/*
Processing sketch to run with this example
=====================================================
// Processing UDP example to send and receive string data from Arduino
// press any key to send the "Hello Arduino" message
import hypermedia.net.*;
UDP udp; // define the UDP object
void setup() {
udp = new UDP( this, 6000 ); // create a new datagram connection on port 6000
//udp.log( true ); // <-- printout the connection activity
udp.listen( true ); // and wait for incoming message
}
void draw()
{
}
void keyPressed() {
String ip = "192.168.1.177"; // the remote IP address
int port = 8888; // the destination port
udp.send("Hello World", ip, port ); // the message to send
}
void receive( byte[] data ) { // <-- default handler
//void receive( byte[] data, String ip, int port ) { // <-- extended handler
for(int i=0; i < data.length; i++)
print(char(data[i]));
println();
}
*/

@ -1,142 +0,0 @@
/*
Udp NTP Client
Get the time from a Network Time Protocol (NTP) time server
Demonstrates use of UDP sendPacket and ReceivePacket
For more on NTP time servers and the messages needed to communicate with them,
see http://en.wikipedia.org/wiki/Network_Time_Protocol
created 4 Sep 2010
by Michael Margolis
modified 9 Apr 2012
by Tom Igoe
This code is in the public domain.
*/
#include <SPI.h>
#include <Ethernet2.h>
#include <EthernetUdp2.h>
// Enter a MAC address for your controller below.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
unsigned int localPort = 8888; // local port to listen for UDP packets
char timeServer[] = "time.nist.gov"; // time.nist.gov NTP server
const int NTP_PACKET_SIZE = 48; // NTP time stamp is in the first 48 bytes of the message
byte packetBuffer[ NTP_PACKET_SIZE]; //buffer to hold incoming and outgoing packets
// A UDP instance to let us send and receive packets over UDP
EthernetUDP Udp;
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start Ethernet and UDP
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// no point in carrying on, so do nothing forevermore:
for (;;)
;
}
Udp.begin(localPort);
}
void loop()
{
sendNTPpacket(timeServer); // send an NTP packet to a time server
// wait to see if a reply is available
delay(1000);
if ( Udp.parsePacket() ) {
// We've received a packet, read the data from it
Udp.read(packetBuffer, NTP_PACKET_SIZE); // read the packet into the buffer
//the timestamp starts at byte 40 of the received packet and is four bytes,
// or two words, long. First, esxtract the two words:
unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);
unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);
// combine the four bytes (two words) into a long integer
// this is NTP time (seconds since Jan 1 1900):
unsigned long secsSince1900 = highWord << 16 | lowWord;
Serial.print("Seconds since Jan 1 1900 = " );
Serial.println(secsSince1900);
// now convert NTP time into everyday time:
Serial.print("Unix time = ");
// Unix time starts on Jan 1 1970. In seconds, that's 2208988800:
const unsigned long seventyYears = 2208988800UL;
// subtract seventy years:
unsigned long epoch = secsSince1900 - seventyYears;
// print Unix time:
Serial.println(epoch);
// print the hour, minute and second:
Serial.print("The UTC time is "); // UTC is the time at Greenwich Meridian (GMT)
Serial.print((epoch % 86400L) / 3600); // print the hour (86400 equals secs per day)
Serial.print(':');
if ( ((epoch % 3600) / 60) < 10 ) {
// In the first 10 minutes of each hour, we'll want a leading '0'
Serial.print('0');
}
Serial.print((epoch % 3600) / 60); // print the minute (3600 equals secs per minute)
Serial.print(':');
if ( (epoch % 60) < 10 ) {
// In the first 10 seconds of each minute, we'll want a leading '0'
Serial.print('0');
}
Serial.println(epoch % 60); // print the second
}
// wait ten seconds before asking for the time again
delay(10000);
}
// send an NTP request to the time server at the given address
unsigned long sendNTPpacket(char* address)
{
// set all bytes in the buffer to 0
memset(packetBuffer, 0, NTP_PACKET_SIZE);
// Initialize values needed to form NTP request
// (see URL above for details on the packets)
packetBuffer[0] = 0b11100011; // LI, Version, Mode
packetBuffer[1] = 0; // Stratum, or type of clock
packetBuffer[2] = 6; // Polling Interval
packetBuffer[3] = 0xEC; // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
packetBuffer[12] = 49;
packetBuffer[13] = 0x4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;
// all NTP fields have been given values, now
// you can send a packet requesting a timestamp:
Udp.beginPacket(address, 123); //NTP requests are to port 123
Udp.write(packetBuffer, NTP_PACKET_SIZE);
Udp.endPacket();
}

@ -1,88 +0,0 @@
/*
Web client
This sketch connects to a website (http://www.google.com)
using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe, based on work by Adrian McEwen
*/
#include <SPI.h>
#include <Ethernet2.h>
// Enter a MAC address for your controller below.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)
char server[] = "www.google.com"; // name address for Google (using DNS)
// Set the static IP address to use if the DHCP fails to assign
IPAddress ip(192, 168, 0, 177);
// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 80 is default for HTTP):
EthernetClient client;
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// no point in carrying on, so do nothing forevermore:
// try to congifure using IP address instead of DHCP:
Ethernet.begin(mac, ip);
}
// give the Ethernet shield a second to initialize:
delay(1000);
Serial.println("connecting...");
// if you get a connection, report back via serial:
if (client.connect(server, 80)) {
Serial.println("connected");
// Make a HTTP request:
client.println("GET /search?q=arduino HTTP/1.1");
client.println("Host: www.google.com");
client.println("Connection: close");
client.println();
}
else {
// kf you didn't get a connection to the server:
Serial.println("connection failed");
}
}
void loop()
{
// if there are incoming bytes available
// from the server, read them and print them:
if (client.available()) {
char c = client.read();
Serial.print(c);
}
// if the server's disconnected, stop the client:
if (!client.connected()) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
// do nothing forevermore:
while (true);
}
}

@ -1,108 +0,0 @@
/*
Repeating Web client
This sketch connects to a a web server and makes a request
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
the Adafruit Ethernet shield, either one will work, as long as it's got
a Wiznet Ethernet module on board.
This example uses DNS, by assigning the Ethernet client with a MAC address,
IP address, and DNS address.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 19 Apr 2012
by Tom Igoe
modified 21 Jan 2014
by Federico Vanzati
http://arduino.cc/en/Tutorial/WebClientRepeating
This code is in the public domain.
*/
#include <SPI.h>
#include <Ethernet2.h>
// assign a MAC address for the ethernet controller.
// fill in your address here:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
// fill in an available IP address on your network here,
// for manual configuration:
IPAddress ip(192, 168, 1, 177);
// fill in your Domain Name Server address here:
IPAddress myDns(1, 1, 1, 1);
// initialize the library instance:
EthernetClient client;
char server[] = "www.arduino.cc";
//IPAddress server(64,131,82,241);
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
const unsigned long postingInterval = 10L * 1000L; // delay between updates, in milliseconds
// the "L" is needed to use long type numbers
void setup() {
// start serial port:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// give the ethernet module time to boot up:
delay(1000);
// start the Ethernet connection using a fixed IP address and DNS server:
Ethernet.begin(mac, ip, myDns);
// print the Ethernet board/shield's IP address:
Serial.print("My IP address: ");
Serial.println(Ethernet.localIP());
}
void loop() {
// if there's incoming data from the net connection.
// send it out the serial port. This is for debugging
// purposes only:
if (client.available()) {
char c = client.read();
Serial.write(c);
}
// if ten seconds have passed since your last connection,
// then connect again and send data:
if (millis() - lastConnectionTime > postingInterval) {
httpRequest();
}
}
// this method makes a HTTP connection to the server:
void httpRequest() {
// close any connection before send a new request.
// This will free the socket on the WiFi shield
client.stop();
// if there's a successful connection:
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP PUT request:
client.println("GET /latest.txt HTTP/1.1");
client.println("Host: www.arduino.cc");
client.println("User-Agent: arduino-ethernet");
client.println("Connection: close");
client.println();
// note the time that the connection was made:
lastConnectionTime = millis();
}
else {
// if you couldn't make a connection:
Serial.println("connection failed");
}
}

@ -1,101 +0,0 @@
/*
Web Server
A simple web server that shows the value of the analog input pins.
using an Arduino Wiznet Ethernet shield.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
* Analog inputs attached to pins A0 through A5 (optional)
created 18 Dec 2009
by David A. Mellis
modified 9 Apr 2012
by Tom Igoe
*/
#include <SPI.h>
#include <Ethernet2.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 1, 177);
// Initialize the Ethernet server library
// with the IP address and port you want to use
// (port 80 is default for HTTP):
EthernetServer server(80);
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection and the server:
Ethernet.begin(mac, ip);
server.begin();
Serial.print("server is at ");
Serial.println(Ethernet.localIP());
}
void loop() {
// listen for incoming clients
EthernetClient client = server.available();
if (client) {
Serial.println("new client");
// an http request ends with a blank line
boolean currentLineIsBlank = true;
while (client.connected()) {
if (client.available()) {
char c = client.read();
Serial.write(c);
// if you've gotten to the end of the line (received a newline
// character) and the line is blank, the http request has ended,
// so you can send a reply
if (c == '\n' && currentLineIsBlank) {
// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("Connection: close"); // the connection will be closed after completion of the response
client.println("Refresh: 5"); // refresh the page automatically every 5 sec
client.println();
client.println("<!DOCTYPE HTML>");
client.println("<html>");
// output the value of each analog input pin
for (int analogChannel = 0; analogChannel < 6; analogChannel++) {
int sensorReading = analogRead(analogChannel);
client.print("analog input ");
client.print(analogChannel);
client.print(" is ");
client.print(sensorReading);
client.println("<br />");
}
client.println("</html>");
break;
}
if (c == '\n') {
// you're starting a new line
currentLineIsBlank = true;
}
else if (c != '\r') {
// you've gotten a character on the current line
currentLineIsBlank = false;
}
}
}
// give the web browser time to receive the data
delay(1);
// close the connection:
client.stop();
Serial.println("client disconnected");
}
}

@ -1,38 +0,0 @@
#######################################
# Syntax Coloring Map For Ethernet
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
Ethernet2 KEYWORD1
EthernetClient KEYWORD1
EthernetServer KEYWORD1
IPAddress KEYWORD1
EthernetUdp2 KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
status KEYWORD2
connect KEYWORD2
write KEYWORD2
available KEYWORD2
read KEYWORD2
peek KEYWORD2
flush KEYWORD2
stop KEYWORD2
connected KEYWORD2
begin KEYWORD2
beginPacket KEYWORD2
endPacket KEYWORD2
parsePacket KEYWORD2
remoteIP KEYWORD2
remotePort KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################

@ -1,9 +0,0 @@
name=Ethernet2
version=1.0.4
author=Various
maintainer=Adafruit <info@adafruit.com>
sentence=Enables network connection (local and Internet) using W5500 based Ethernet shields.
paragraph=With this library you can use W5500 based Ethernet shields, such as the 'Arduino Ethernet Shield v2' to connect to Internet, but not older W5100 based shields. The library provides both Client and server functionalities. The library permits you to connect to a local network also with DHCP and to resolve DNS.
category=Communication
url=https://github.com/adafruit/Ethernet2
architectures=*

@ -1,753 +0,0 @@
this file includes licensing information for parts of arduino.
first, the gnu general public license, which covers the main body
of the processing/arduino code (in general, all the stuff inside the 'app'
and 'core' subfolders).
next, the gnu lesser general public license that covers the arduino core
and libraries.
.....................................................................
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
.....................................................................
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

@ -1,518 +0,0 @@
// DHCP Library v0.3 - April 25, 2009
// Author: Jordan Terrell - blog.jordanterrell.com
#include "utility/w5500.h"
#include <string.h>
#include <stdlib.h>
#include "Dhcp.h"
#include "Arduino.h"
#include "utility/util.h"
int DhcpClass::beginWithDHCP(uint8_t *mac, unsigned long timeout, unsigned long responseTimeout)
{
_dhcpLeaseTime=0;
_dhcpT1=0;
_dhcpT2=0;
_lastCheck=0;
_timeout = timeout;
_responseTimeout = responseTimeout;
// zero out _dhcpMacAddr
memset(_dhcpMacAddr, 0, 6);
reset_DHCP_lease();
memcpy((void*)_dhcpMacAddr, (void*)mac, 6);
_dhcp_state = STATE_DHCP_START;
return request_DHCP_lease();
}
void DhcpClass::reset_DHCP_lease(){
// zero out _dhcpSubnetMask, _dhcpGatewayIp, _dhcpLocalIp, _dhcpDhcpServerIp, _dhcpDnsServerIp
memset(_dhcpLocalIp, 0, 20);
}
//return:0 on error, 1 if request is sent and response is received
int DhcpClass::request_DHCP_lease(){
uint8_t messageType = 0;
// Pick an initial transaction ID
_dhcpTransactionId = random(1UL, 2000UL);
_dhcpInitialTransactionId = _dhcpTransactionId;
_dhcpUdpSocket.stop();
if (_dhcpUdpSocket.begin(DHCP_CLIENT_PORT) == 0)
{
// Couldn't get a socket
return 0;
}
presend_DHCP();
int result = 0;
unsigned long startTime = millis();
while(_dhcp_state != STATE_DHCP_LEASED)
{
if(_dhcp_state == STATE_DHCP_START)
{
//Serial.println("DHCP_START");
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_DISCOVER, ((millis() - startTime) / 1000));
_dhcp_state = STATE_DHCP_DISCOVER;
}
else if(_dhcp_state == STATE_DHCP_REREQUEST){
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime)/1000));
_dhcp_state = STATE_DHCP_REQUEST;
}
else if(_dhcp_state == STATE_DHCP_DISCOVER)
{
uint32_t respId;
messageType = parseDHCPResponse(_responseTimeout, respId);
if(messageType == DHCP_OFFER)
{
// We'll use the transaction ID that the offer came with,
// rather than the one we were up to
_dhcpTransactionId = respId;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime) / 1000));
_dhcp_state = STATE_DHCP_REQUEST;
}
}
else if(_dhcp_state == STATE_DHCP_REQUEST)
{
uint32_t respId;
messageType = parseDHCPResponse(_responseTimeout, respId);
if(messageType == DHCP_ACK)
{
_dhcp_state = STATE_DHCP_LEASED;
result = 1;
//use default lease time if we didn't get it
if(_dhcpLeaseTime == 0){
_dhcpLeaseTime = DEFAULT_LEASE;
}
//calculate T1 & T2 if we didn't get it
if(_dhcpT1 == 0){
//T1 should be 50% of _dhcpLeaseTime
_dhcpT1 = _dhcpLeaseTime >> 1;
}
if(_dhcpT2 == 0){
//T2 should be 87.5% (7/8ths) of _dhcpLeaseTime
_dhcpT2 = _dhcpT1 << 1;
}
_renewInSec = _dhcpT1;
_rebindInSec = _dhcpT2;
}
else if(messageType == DHCP_NAK)
_dhcp_state = STATE_DHCP_START;
}
if(messageType == 255)
{
messageType = 0;
_dhcp_state = STATE_DHCP_START;
}
if(result != 1 && ((millis() - startTime) > _timeout))
break;
}
// We're done with the socket now
_dhcpUdpSocket.stop();
_dhcpTransactionId++;
return result;
}
void DhcpClass::presend_DHCP()
{
}
void DhcpClass::send_DHCP_MESSAGE(uint8_t messageType, uint16_t secondsElapsed)
{
uint8_t buffer[32];
memset(buffer, 0, 32);
IPAddress dest_addr( 255, 255, 255, 255 ); // Broadcast address
if (-1 == _dhcpUdpSocket.beginPacket(dest_addr, DHCP_SERVER_PORT))
{
// FIXME Need to return errors
return;
}
buffer[0] = DHCP_BOOTREQUEST; // op
buffer[1] = DHCP_HTYPE10MB; // htype
buffer[2] = DHCP_HLENETHERNET; // hlen
buffer[3] = DHCP_HOPS; // hops
// xid
unsigned long xid = htonl(_dhcpTransactionId);
memcpy(buffer + 4, &(xid), 4);
// 8, 9 - seconds elapsed
buffer[8] = ((secondsElapsed & 0xff00) >> 8);
buffer[9] = (secondsElapsed & 0x00ff);
// flags
unsigned short flags = htons(DHCP_FLAGSBROADCAST);
memcpy(buffer + 10, &(flags), 2);
// ciaddr: already zeroed
// yiaddr: already zeroed
// siaddr: already zeroed
// giaddr: already zeroed
//put data in w5500 transmit buffer
_dhcpUdpSocket.write(buffer, 28);
memset(buffer, 0, 32); // clear local buffer
memcpy(buffer, _dhcpMacAddr, 6); // chaddr
//put data in w5500 transmit buffer
_dhcpUdpSocket.write(buffer, 16);
memset(buffer, 0, 32); // clear local buffer
// leave zeroed out for sname && file
// put in w5500 transmit buffer x 6 (192 bytes)
for(int i = 0; i < 6; i++) {
_dhcpUdpSocket.write(buffer, 32);
}
// OPT - Magic Cookie
buffer[0] = (uint8_t)((MAGIC_COOKIE >> 24)& 0xFF);
buffer[1] = (uint8_t)((MAGIC_COOKIE >> 16)& 0xFF);
buffer[2] = (uint8_t)((MAGIC_COOKIE >> 8)& 0xFF);
buffer[3] = (uint8_t)(MAGIC_COOKIE& 0xFF);
// OPT - message type
buffer[4] = dhcpMessageType;
buffer[5] = 0x01;
buffer[6] = messageType; //DHCP_REQUEST;
// OPT - client identifier
buffer[7] = dhcpClientIdentifier;
buffer[8] = 0x07;
buffer[9] = 0x01;
memcpy(buffer + 10, _dhcpMacAddr, 6);
// OPT - host name
buffer[16] = hostName;
buffer[17] = strlen(HOST_NAME) + 6; // length of hostname + last 3 bytes of mac address
strcpy((char*)&(buffer[18]), HOST_NAME);
printByte((char*)&(buffer[24]), _dhcpMacAddr[3]);
printByte((char*)&(buffer[26]), _dhcpMacAddr[4]);
printByte((char*)&(buffer[28]), _dhcpMacAddr[5]);
//put data in w5500 transmit buffer
_dhcpUdpSocket.write(buffer, 30);
if(messageType == DHCP_REQUEST)
{
buffer[0] = dhcpRequestedIPaddr;
buffer[1] = 0x04;
buffer[2] = _dhcpLocalIp[0];
buffer[3] = _dhcpLocalIp[1];
buffer[4] = _dhcpLocalIp[2];
buffer[5] = _dhcpLocalIp[3];
buffer[6] = dhcpServerIdentifier;
buffer[7] = 0x04;
buffer[8] = _dhcpDhcpServerIp[0];
buffer[9] = _dhcpDhcpServerIp[1];
buffer[10] = _dhcpDhcpServerIp[2];
buffer[11] = _dhcpDhcpServerIp[3];
//put data in w5500 transmit buffer
_dhcpUdpSocket.write(buffer, 12);
}
buffer[0] = dhcpParamRequest;
buffer[1] = 0x06;
buffer[2] = subnetMask;
buffer[3] = routersOnSubnet;
buffer[4] = dns;
buffer[5] = domainName;
buffer[6] = dhcpT1value;
buffer[7] = dhcpT2value;
buffer[8] = endOption;
//put data in w5500 transmit buffer
_dhcpUdpSocket.write(buffer, 9);
_dhcpUdpSocket.endPacket();
}
uint8_t DhcpClass::parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId)
{
uint8_t type = 0;
uint8_t opt_len = 0;
unsigned long startTime = millis();
while(_dhcpUdpSocket.parsePacket() <= 0)
{
if((millis() - startTime) > responseTimeout)
{
return 255;
}
delay(50);
}
// start reading in the packet
RIP_MSG_FIXED fixedMsg;
_dhcpUdpSocket.read((uint8_t*)&fixedMsg, sizeof(RIP_MSG_FIXED));
if(fixedMsg.op == DHCP_BOOTREPLY && _dhcpUdpSocket.remotePort() == DHCP_SERVER_PORT)
{
transactionId = ntohl(fixedMsg.xid);
if(memcmp(fixedMsg.chaddr, _dhcpMacAddr, 6) != 0 || (transactionId < _dhcpInitialTransactionId) || (transactionId > _dhcpTransactionId))
{
// Need to read the rest of the packet here regardless
_dhcpUdpSocket.flush();
return 0;
}
memcpy(_dhcpLocalIp, fixedMsg.yiaddr, 4);
// Skip to the option part
// Doing this a byte at a time so we don't have to put a big buffer
// on the stack (as we don't have lots of memory lying around)
for (int i =0; i < (240 - (int)sizeof(RIP_MSG_FIXED)); i++)
{
_dhcpUdpSocket.read(); // we don't care about the returned byte
}
while (_dhcpUdpSocket.available() > 0)
{
switch (_dhcpUdpSocket.read())
{
case endOption :
break;
case padOption :
break;
case dhcpMessageType :
opt_len = _dhcpUdpSocket.read();
type = _dhcpUdpSocket.read();
break;
case subnetMask :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpSubnetMask, 4);
break;
case routersOnSubnet :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpGatewayIp, 4);
for (int i = 0; i < opt_len-4; i++)
{
_dhcpUdpSocket.read();
}
break;
case dns :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpDnsServerIp, 4);
for (int i = 0; i < opt_len-4; i++)
{
_dhcpUdpSocket.read();
}
break;
case domainName:
opt_len = _dhcpUdpSocket.read();
_dhcpDnsdomainName = (char*)malloc(sizeof(char)*opt_len+1);
_dhcpUdpSocket.read(_dhcpDnsdomainName, opt_len);
_dhcpDnsdomainName[opt_len] = '\0';
break;
case hostName:
opt_len = _dhcpUdpSocket.read();
_dhcpHostName = (char*)malloc(sizeof(char)*opt_len+1);
_dhcpUdpSocket.read(_dhcpHostName, opt_len);
_dhcpHostName[opt_len] = '\0';
break;
case dhcpServerIdentifier :
opt_len = _dhcpUdpSocket.read();
if(((_dhcpDhcpServerIp[0] == 0) && (_dhcpDhcpServerIp[1] == 0) && (_dhcpDhcpServerIp[2] == 0) && (_dhcpDhcpServerIp[3] == 0)) || (IPAddress(_dhcpDhcpServerIp) == _dhcpUdpSocket.remoteIP()))
{
_dhcpUdpSocket.read(_dhcpDhcpServerIp, sizeof(_dhcpDhcpServerIp));
}
else
{
// Skip over the rest of this option
while (opt_len--)
{
_dhcpUdpSocket.read();
}
}
break;
case dhcpT1value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT1, sizeof(_dhcpT1));
_dhcpT1 = ntohl(_dhcpT1);
break;
case dhcpT2value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT2, sizeof(_dhcpT2));
_dhcpT2 = ntohl(_dhcpT2);
break;
case dhcpIPaddrLeaseTime :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpLeaseTime, sizeof(_dhcpLeaseTime));
_dhcpLeaseTime = ntohl(_dhcpLeaseTime);
_renewInSec = _dhcpLeaseTime;
break;
default :
opt_len = _dhcpUdpSocket.read();
// Skip over the rest of this option
while (opt_len--)
{
_dhcpUdpSocket.read();
}
break;
}
}
}
// Need to skip to end of the packet regardless here
_dhcpUdpSocket.flush();
return type;
}
/*
returns:
0/DHCP_CHECK_NONE: nothing happened
1/DHCP_CHECK_RENEW_FAIL: renew failed
2/DHCP_CHECK_RENEW_OK: renew success
3/DHCP_CHECK_REBIND_FAIL: rebind fail
4/DHCP_CHECK_REBIND_OK: rebind success
*/
int DhcpClass::checkLease(){
//this uses a signed / unsigned trick to deal with millis overflow
unsigned long now = millis();
signed long snow = (long)now;
int rc=DHCP_CHECK_NONE;
if (_lastCheck != 0){
signed long factor;
//calc how many ms past the timeout we are
factor = snow - (long)_secTimeout;
//if on or passed the timeout, reduce the counters
if ( factor >= 0 ){
//next timeout should be now plus 1000 ms minus parts of second in factor
_secTimeout = snow + 1000 - factor % 1000;
//how many seconds late are we, minimum 1
factor = factor / 1000 +1;
//reduce the counters by that mouch
//if we can assume that the cycle time (factor) is fairly constant
//and if the remainder is less than cycle time * 2
//do it early instead of late
if(_renewInSec < factor*2 )
_renewInSec = 0;
else
_renewInSec -= factor;
if(_rebindInSec < factor*2 )
_rebindInSec = 0;
else
_rebindInSec -= factor;
}
//if we have a lease but should renew, do it
if (_dhcp_state == STATE_DHCP_LEASED && _renewInSec <=0){
_dhcp_state = STATE_DHCP_REREQUEST;
rc = 1 + request_DHCP_lease();
}
//if we have a lease or is renewing but should bind, do it
if( (_dhcp_state == STATE_DHCP_LEASED || _dhcp_state == STATE_DHCP_START) && _rebindInSec <=0){
//this should basically restart completely
_dhcp_state = STATE_DHCP_START;
reset_DHCP_lease();
rc = 3 + request_DHCP_lease();
}
}
else{
_secTimeout = snow + 1000;
}
_lastCheck = now;
return rc;
}
IPAddress DhcpClass::getLocalIp()
{
return IPAddress(_dhcpLocalIp);
}
IPAddress DhcpClass::getSubnetMask()
{
return IPAddress(_dhcpSubnetMask);
}
IPAddress DhcpClass::getGatewayIp()
{
return IPAddress(_dhcpGatewayIp);
}
IPAddress DhcpClass::getDhcpServerIp()
{
return IPAddress(_dhcpDhcpServerIp);
}
IPAddress DhcpClass::getDnsServerIp()
{
return IPAddress(_dhcpDnsServerIp);
}
char* DhcpClass::getDnsDomainName()
{
return _dhcpDnsdomainName;
}
char* DhcpClass::getHostName()
{
return _dhcpHostName;
}
void DhcpClass::printByte(char * buf, uint8_t n ) {
char *str = &buf[1];
buf[0]='0';
do {
unsigned long m = n;
n /= 16;
char c = m - 16 * n;
*str-- = c < 10 ? c + '0' : c + 'A' - 10;
} while(n);
}

@ -1,182 +0,0 @@
// DHCP Library v0.3 - April 25, 2009
// Author: Jordan Terrell - blog.jordanterrell.com
#ifndef Dhcp_h
#define Dhcp_h
#include "EthernetUdp2.h"
/* DHCP state machine. */
#define STATE_DHCP_START 0
#define STATE_DHCP_DISCOVER 1
#define STATE_DHCP_REQUEST 2
#define STATE_DHCP_LEASED 3
#define STATE_DHCP_REREQUEST 4
#define STATE_DHCP_RELEASE 5
#define DHCP_FLAGSBROADCAST 0x8000
/* UDP port numbers for DHCP */
#define DHCP_SERVER_PORT 67 /* from server to client */
#define DHCP_CLIENT_PORT 68 /* from client to server */
/* DHCP message OP code */
#define DHCP_BOOTREQUEST 1
#define DHCP_BOOTREPLY 2
/* DHCP message type */
#define DHCP_DISCOVER 1
#define DHCP_OFFER 2
#define DHCP_REQUEST 3
#define DHCP_DECLINE 4
#define DHCP_ACK 5
#define DHCP_NAK 6
#define DHCP_RELEASE 7
#define DHCP_INFORM 8
#define DHCP_HTYPE10MB 1
#define DHCP_HTYPE100MB 2
#define DHCP_HLENETHERNET 6
#define DHCP_HOPS 0
#define DHCP_SECS 0
#define MAGIC_COOKIE 0x63825363
#define MAX_DHCP_OPT 16
#define HOST_NAME "WIZnet"
#define DEFAULT_LEASE (900) //default lease time in seconds
#define DHCP_CHECK_NONE (0)
#define DHCP_CHECK_RENEW_FAIL (1)
#define DHCP_CHECK_RENEW_OK (2)
#define DHCP_CHECK_REBIND_FAIL (3)
#define DHCP_CHECK_REBIND_OK (4)
enum
{
padOption = 0,
subnetMask = 1,
timerOffset = 2,
routersOnSubnet = 3,
/* timeServer = 4,
nameServer = 5,*/
dns = 6,
/*logServer = 7,
cookieServer = 8,
lprServer = 9,
impressServer = 10,
resourceLocationServer = 11,*/
hostName = 12,
/*bootFileSize = 13,
meritDumpFile = 14,*/
domainName = 15,
/*swapServer = 16,
rootPath = 17,
extentionsPath = 18,
IPforwarding = 19,
nonLocalSourceRouting = 20,
policyFilter = 21,
maxDgramReasmSize = 22,
defaultIPTTL = 23,
pathMTUagingTimeout = 24,
pathMTUplateauTable = 25,
ifMTU = 26,
allSubnetsLocal = 27,
broadcastAddr = 28,
performMaskDiscovery = 29,
maskSupplier = 30,
performRouterDiscovery = 31,
routerSolicitationAddr = 32,
staticRoute = 33,
trailerEncapsulation = 34,
arpCacheTimeout = 35,
ethernetEncapsulation = 36,
tcpDefaultTTL = 37,
tcpKeepaliveInterval = 38,
tcpKeepaliveGarbage = 39,
nisDomainName = 40,
nisServers = 41,
ntpServers = 42,
vendorSpecificInfo = 43,
netBIOSnameServer = 44,
netBIOSdgramDistServer = 45,
netBIOSnodeType = 46,
netBIOSscope = 47,
xFontServer = 48,
xDisplayManager = 49,*/
dhcpRequestedIPaddr = 50,
dhcpIPaddrLeaseTime = 51,
/*dhcpOptionOverload = 52,*/
dhcpMessageType = 53,
dhcpServerIdentifier = 54,
dhcpParamRequest = 55,
/*dhcpMsg = 56,
dhcpMaxMsgSize = 57,*/
dhcpT1value = 58,
dhcpT2value = 59,
/*dhcpClassIdentifier = 60,*/
dhcpClientIdentifier = 61,
endOption = 255
};
typedef struct _RIP_MSG_FIXED
{
uint8_t op;
uint8_t htype;
uint8_t hlen;
uint8_t hops;
uint32_t xid;
uint16_t secs;
uint16_t flags;
uint8_t ciaddr[4];
uint8_t yiaddr[4];
uint8_t siaddr[4];
uint8_t giaddr[4];
uint8_t chaddr[6];
}RIP_MSG_FIXED;
class DhcpClass {
private:
uint32_t _dhcpInitialTransactionId;
uint32_t _dhcpTransactionId;
uint8_t _dhcpMacAddr[6];
uint8_t _dhcpLocalIp[4];
char* _dhcpDnsdomainName;
char* _dhcpHostName;
uint8_t _dhcpSubnetMask[4];
uint8_t _dhcpGatewayIp[4];
uint8_t _dhcpDhcpServerIp[4];
uint8_t _dhcpDnsServerIp[4];
uint32_t _dhcpLeaseTime;
uint32_t _dhcpT1, _dhcpT2;
signed long _renewInSec;
signed long _rebindInSec;
signed long _lastCheck;
unsigned long _timeout;
unsigned long _responseTimeout;
unsigned long _secTimeout;
uint8_t _dhcp_state;
EthernetUDP _dhcpUdpSocket;
int request_DHCP_lease();
void reset_DHCP_lease();
void presend_DHCP();
void send_DHCP_MESSAGE(uint8_t, uint16_t);
void printByte(char *, uint8_t);
uint8_t parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId);
public:
IPAddress getLocalIp();
IPAddress getSubnetMask();
IPAddress getGatewayIp();
IPAddress getDhcpServerIp();
IPAddress getDnsServerIp();
char* getDnsDomainName();
char* getHostName();
int beginWithDHCP(uint8_t *, unsigned long timeout = 60000, unsigned long responseTimeout = 5000);
int checkLease();
};
#endif

@ -1,423 +0,0 @@
// Arduino DNS client for WizNet5100-based Ethernet shield
// (c) Copyright 2009-2010 MCQN Ltd.
// Released under Apache License, version 2.0
#include "utility/w5500.h"
#include "EthernetUdp2.h"
#include "utility/util.h"
#include "Dns.h"
#include <string.h>
//#include <stdlib.h>
#include "Arduino.h"
#define SOCKET_NONE 255
// Various flags and header field values for a DNS message
#define UDP_HEADER_SIZE 8
#define DNS_HEADER_SIZE 12
#define TTL_SIZE 4
#define QUERY_FLAG (0)
#define RESPONSE_FLAG (1<<15)
#define QUERY_RESPONSE_MASK (1<<15)
#define OPCODE_STANDARD_QUERY (0)
#define OPCODE_INVERSE_QUERY (1<<11)
#define OPCODE_STATUS_REQUEST (2<<11)
#define OPCODE_MASK (15<<11)
#define AUTHORITATIVE_FLAG (1<<10)
#define TRUNCATION_FLAG (1<<9)
#define RECURSION_DESIRED_FLAG (1<<8)
#define RECURSION_AVAILABLE_FLAG (1<<7)
#define RESP_NO_ERROR (0)
#define RESP_FORMAT_ERROR (1)
#define RESP_SERVER_FAILURE (2)
#define RESP_NAME_ERROR (3)
#define RESP_NOT_IMPLEMENTED (4)
#define RESP_REFUSED (5)
#define RESP_MASK (15)
#define TYPE_A (0x0001)
#define CLASS_IN (0x0001)
#define LABEL_COMPRESSION_MASK (0xC0)
// Port number that DNS servers listen on
#define DNS_PORT 53
// Possible return codes from ProcessResponse
#define SUCCESS 1
#define TIMED_OUT -1
#define INVALID_SERVER -2
#define TRUNCATED -3
#define INVALID_RESPONSE -4
void DNSClient::begin(const IPAddress& aDNSServer)
{
iDNSServer = aDNSServer;
iRequestId = 0;
}
int DNSClient::inet_aton(const char* aIPAddrString, IPAddress& aResult)
{
// See if we've been given a valid IP address
const char* p =aIPAddrString;
while (*p &&
( (*p == '.') || (*p >= '0') || (*p <= '9') ))
{
p++;
}
if (*p == '\0')
{
// It's looking promising, we haven't found any invalid characters
p = aIPAddrString;
int segment =0;
int segmentValue =0;
while (*p && (segment < 4))
{
if (*p == '.')
{
// We've reached the end of a segment
if (segmentValue > 255)
{
// You can't have IP address segments that don't fit in a byte
return 0;
}
else
{
aResult[segment] = (byte)segmentValue;
segment++;
segmentValue = 0;
}
}
else
{
// Next digit
segmentValue = (segmentValue*10)+(*p - '0');
}
p++;
}
// We've reached the end of address, but there'll still be the last
// segment to deal with
if ((segmentValue > 255) || (segment > 3))
{
// You can't have IP address segments that don't fit in a byte,
// or more than four segments
return 0;
}
else
{
aResult[segment] = (byte)segmentValue;
return 1;
}
}
else
{
return 0;
}
}
int DNSClient::getHostByName(const char* aHostname, IPAddress& aResult)
{
int ret =0;
// See if it's a numeric IP address
if (inet_aton(aHostname, aResult))
{
// It is, our work here is done
return 1;
}
// Check we've got a valid DNS server to use
if (iDNSServer == INADDR_NONE)
{
return INVALID_SERVER;
}
// Find a socket to use
if (iUdp.begin(1024+(millis() & 0xF)) == 1)
{
// Try up to three times
int retries = 0;
// while ((retries < 3) && (ret <= 0))
{
// Send DNS request
ret = iUdp.beginPacket(iDNSServer, DNS_PORT);
if (ret != 0)
{
// Now output the request data
ret = BuildRequest(aHostname);
if (ret != 0)
{
// And finally send the request
ret = iUdp.endPacket();
if (ret != 0)
{
// Now wait for a response
int wait_retries = 0;
ret = TIMED_OUT;
while ((wait_retries < 3) && (ret == TIMED_OUT))
{
ret = ProcessResponse(5000, aResult);
wait_retries++;
}
}
}
}
retries++;
}
// We're done with the socket now
iUdp.stop();
}
return ret;
}
uint16_t DNSClient::BuildRequest(const char* aName)
{
// Build header
// 1 1 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ID |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// |QR| Opcode |AA|TC|RD|RA| Z | RCODE |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | QDCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ANCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | NSCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ARCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// As we only support one request at a time at present, we can simplify
// some of this header
iRequestId = millis(); // generate a random ID
uint16_t twoByteBuffer;
// FIXME We should also check that there's enough space available to write to, rather
// FIXME than assume there's enough space (as the code does at present)
iUdp.write((uint8_t*)&iRequestId, sizeof(iRequestId));
twoByteBuffer = htons(QUERY_FLAG | OPCODE_STANDARD_QUERY | RECURSION_DESIRED_FLAG);
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = htons(1); // One question record
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = 0; // Zero answer records
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// and zero additional records
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// Build question
const char* start =aName;
const char* end =start;
uint8_t len;
// Run through the name being requested
while (*end)
{
// Find out how long this section of the name is
end = start;
while (*end && (*end != '.') )
{
end++;
}
if (end-start > 0)
{
// Write out the size of this section
len = end-start;
iUdp.write(&len, sizeof(len));
// And then write out the section
iUdp.write((uint8_t*)start, end-start);
}
start = end+1;
}
// We've got to the end of the question name, so
// terminate it with a zero-length section
len = 0;
iUdp.write(&len, sizeof(len));
// Finally the type and class of question
twoByteBuffer = htons(TYPE_A);
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = htons(CLASS_IN); // Internet class of question
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// Success! Everything buffered okay
return 1;
}
uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
{
uint32_t startTime = millis();
// Wait for a response packet
while(iUdp.parsePacket() <= 0)
{
if((millis() - startTime) > aTimeout)
return TIMED_OUT;
delay(50);
}
// We've had a reply!
// Read the UDP header
uint8_t header[DNS_HEADER_SIZE]; // Enough space to reuse for the DNS header
// Check that it's a response from the right server and the right port
if ( (iDNSServer != iUdp.remoteIP()) ||
(iUdp.remotePort() != DNS_PORT) )
{
// It's not from who we expected
return INVALID_SERVER;
}
// Read through the rest of the response
if (iUdp.available() < DNS_HEADER_SIZE)
{
return TRUNCATED;
}
iUdp.read(header, DNS_HEADER_SIZE);
uint16_t header_flags = htons(*((uint16_t*)&header[2]));
// Check that it's a response to this request
if ( ( iRequestId != (*((uint16_t*)&header[0])) ) ||
((header_flags & QUERY_RESPONSE_MASK) != (uint16_t)RESPONSE_FLAG) )
{
// Mark the entire packet as read
iUdp.flush();
return INVALID_RESPONSE;
}
// Check for any errors in the response (or in our request)
// although we don't do anything to get round these
if ( (header_flags & TRUNCATION_FLAG) || (header_flags & RESP_MASK) )
{
// Mark the entire packet as read
iUdp.flush();
return -5; //INVALID_RESPONSE;
}
// And make sure we've got (at least) one answer
uint16_t answerCount = htons(*((uint16_t*)&header[6]));
if (answerCount == 0 )
{
// Mark the entire packet as read
iUdp.flush();
return -6; //INVALID_RESPONSE;
}
// Skip over any questions
for (uint16_t i =0; i < htons(*((uint16_t*)&header[4])); i++)
{
// Skip over the name
uint8_t len;
do
{
iUdp.read(&len, sizeof(len));
if (len > 0)
{
// Don't need to actually read the data out for the string, just
// advance ptr to beyond it
while(len--)
{
iUdp.read(); // we don't care about the returned byte
}
}
} while (len != 0);
// Now jump over the type and class
for (int i =0; i < 4; i++)
{
iUdp.read(); // we don't care about the returned byte
}
}
// Now we're up to the bit we're interested in, the answer
// There might be more than one answer (although we'll just use the first
// type A answer) and some authority and additional resource records but
// we're going to ignore all of them.
for (uint16_t i =0; i < answerCount; i++)
{
// Skip the name
uint8_t len;
do
{
iUdp.read(&len, sizeof(len));
if ((len & LABEL_COMPRESSION_MASK) == 0)
{
// It's just a normal label
if (len > 0)
{
// And it's got a length
// Don't need to actually read the data out for the string,
// just advance ptr to beyond it
while(len--)
{
iUdp.read(); // we don't care about the returned byte
}
}
}
else
{
// This is a pointer to a somewhere else in the message for the
// rest of the name. We don't care about the name, and RFC1035
// says that a name is either a sequence of labels ended with a
// 0 length octet or a pointer or a sequence of labels ending in
// a pointer. Either way, when we get here we're at the end of
// the name
// Skip over the pointer
iUdp.read(); // we don't care about the returned byte
// And set len so that we drop out of the name loop
len = 0;
}
} while (len != 0);
// Check the type and class
uint16_t answerType;
uint16_t answerClass;
iUdp.read((uint8_t*)&answerType, sizeof(answerType));
iUdp.read((uint8_t*)&answerClass, sizeof(answerClass));
// Ignore the Time-To-Live as we don't do any caching
for (int i =0; i < TTL_SIZE; i++)
{
iUdp.read(); // we don't care about the returned byte
}
// And read out the length of this answer
// Don't need header_flags anymore, so we can reuse it here
iUdp.read((uint8_t*)&header_flags, sizeof(header_flags));
if ( (htons(answerType) == TYPE_A) && (htons(answerClass) == CLASS_IN) )
{
if (htons(header_flags) != 4)
{
// It's a weird size
// Mark the entire packet as read
iUdp.flush();
return -9;//INVALID_RESPONSE;
}
iUdp.read(aAddress.raw_address(), 4);
return SUCCESS;
}
else
{
// This isn't an answer type we're after, move onto the next one
for (uint16_t i =0; i < htons(header_flags); i++)
{
iUdp.read(); // we don't care about the returned byte
}
}
}
// Mark the entire packet as read
iUdp.flush();
// If we get here then we haven't found an answer
return -10;//INVALID_RESPONSE;
}

@ -1,41 +0,0 @@
// Arduino DNS client for WizNet5100-based Ethernet shield
// (c) Copyright 2009-2010 MCQN Ltd.
// Released under Apache License, version 2.0
#ifndef DNSClient_h
#define DNSClient_h
#include <EthernetUdp2.h>
class DNSClient
{
public:
// ctor
void begin(const IPAddress& aDNSServer);
/** Convert a numeric IP address string into a four-byte IP address.
@param aIPAddrString IP address to convert
@param aResult IPAddress structure to store the returned IP address
@result 1 if aIPAddrString was successfully converted to an IP address,
else error code
*/
int inet_aton(const char *aIPAddrString, IPAddress& aResult);
/** Resolve the given hostname to an IP address.
@param aHostname Name to be resolved
@param aResult IPAddress structure to store the returned IP address
@result 1 if aIPAddrString was successfully converted to an IP address,
else error code
*/
int getHostByName(const char* aHostname, IPAddress& aResult);
protected:
uint16_t BuildRequest(const char* aName);
uint16_t ProcessResponse(uint16_t aTimeout, IPAddress& aAddress);
IPAddress iDNSServer;
uint16_t iRequestId;
EthernetUDP iUdp;
};
#endif

@ -1,209 +0,0 @@
/*
modified 12 Aug 2013
by Soohwan Kim (suhwan@wiznet.co.kr)
- 10 Apr. 2015
Added support for Arduino Ethernet Shield 2
by Arduino.org team
*/
#include "Ethernet2.h"
#include "Dhcp.h"
// XXX: don't make assumptions about the value of MAX_SOCK_NUM.
uint8_t EthernetClass::_state[MAX_SOCK_NUM] = { 0, };
uint16_t EthernetClass::_server_port[MAX_SOCK_NUM] = { 0, };
#if defined(WIZ550io_WITH_MACADDRESS)
int EthernetClass::begin(void)
{
byte mac_address[6] ={0,};
if (_dhcp != NULL) {
delete _dhcp;
}
_dhcp = new DhcpClass();
// Initialise the basic info
w5500.init(w5500_cspin);
w5500.setIPAddress(IPAddress(0,0,0,0).raw_address());
w5500.getMACAddress(mac_address);
// Now try to get our config info from a DHCP server
int ret = _dhcp->beginWithDHCP(mac_address);
if(ret == 1)
{
// We've successfully found a DHCP server and got our configuration info, so set things
// accordingly
w5500.setIPAddress(_dhcp->getLocalIp().raw_address());
w5500.setGatewayIp(_dhcp->getGatewayIp().raw_address());
w5500.setSubnetMask(_dhcp->getSubnetMask().raw_address());
_dnsServerAddress = _dhcp->getDnsServerIp();
_dnsDomainName = _dhcp->getDnsDomainName();
_hostName = _dhcp->getHostName();
}
return ret;
}
void EthernetClass::begin(IPAddress local_ip)
{
// Assume the DNS server will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress dns_server = local_ip;
dns_server[3] = 1;
begin(local_ip, dns_server);
}
void EthernetClass::begin(IPAddress local_ip, IPAddress dns_server)
{
// Assume the gateway will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress gateway = local_ip;
gateway[3] = 1;
begin(local_ip, dns_server, gateway);
}
void EthernetClass::begin(IPAddress local_ip, IPAddress dns_server, IPAddress gateway)
{
IPAddress subnet(255, 255, 255, 0);
begin(local_ip, dns_server, gateway, subnet);
}
void EthernetClass::begin(IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet)
{
w5500.init(w5500_cspin);
w5500.setIPAddress(local_ip.raw_address());
w5500.setGatewayIp(gateway.raw_address());
w5500.setSubnetMask(subnet.raw_address());
_dnsServerAddress = dns_server;
}
#else
int EthernetClass::begin(uint8_t *mac_address)
{
if (_dhcp != NULL) {
delete _dhcp;
}
_dhcp = new DhcpClass();
// Initialise the basic info
w5500.init(w5500_cspin);
w5500.setMACAddress(mac_address);
w5500.setIPAddress(IPAddress(0,0,0,0).raw_address());
// Now try to get our config info from a DHCP server
int ret = _dhcp->beginWithDHCP(mac_address);
if(ret == 1)
{
// We've successfully found a DHCP server and got our configuration info, so set things
// accordingly
w5500.setIPAddress(_dhcp->getLocalIp().raw_address());
w5500.setGatewayIp(_dhcp->getGatewayIp().raw_address());
w5500.setSubnetMask(_dhcp->getSubnetMask().raw_address());
_dnsServerAddress = _dhcp->getDnsServerIp();
_dnsDomainName = _dhcp->getDnsDomainName();
_hostName = _dhcp->getHostName();
}
return ret;
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip)
{
// Assume the DNS server will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress dns_server = local_ip;
dns_server[3] = 1;
begin(mac_address, local_ip, dns_server);
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server)
{
// Assume the gateway will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress gateway = local_ip;
gateway[3] = 1;
begin(mac_address, local_ip, dns_server, gateway);
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway)
{
IPAddress subnet(255, 255, 255, 0);
begin(mac_address, local_ip, dns_server, gateway, subnet);
}
void EthernetClass::begin(uint8_t *mac, IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet)
{
w5500.init(w5500_cspin);
w5500.setMACAddress(mac);
w5500.setIPAddress(local_ip.raw_address());
w5500.setGatewayIp(gateway.raw_address());
w5500.setSubnetMask(subnet.raw_address());
_dnsServerAddress = dns_server;
}
#endif
int EthernetClass::maintain(){
int rc = DHCP_CHECK_NONE;
if(_dhcp != NULL){
//we have a pointer to dhcp, use it
rc = _dhcp->checkLease();
switch ( rc ){
case DHCP_CHECK_NONE:
//nothing done
break;
case DHCP_CHECK_RENEW_OK:
case DHCP_CHECK_REBIND_OK:
//we might have got a new IP.
w5500.setIPAddress(_dhcp->getLocalIp().raw_address());
w5500.setGatewayIp(_dhcp->getGatewayIp().raw_address());
w5500.setSubnetMask(_dhcp->getSubnetMask().raw_address());
_dnsServerAddress = _dhcp->getDnsServerIp();
_dnsDomainName = _dhcp->getDnsDomainName();
_hostName = _dhcp->getHostName();
break;
default:
//this is actually a error, it will retry though
break;
}
}
return rc;
}
IPAddress EthernetClass::localIP()
{
IPAddress ret;
w5500.getIPAddress(ret.raw_address());
return ret;
}
IPAddress EthernetClass::subnetMask()
{
IPAddress ret;
w5500.getSubnetMask(ret.raw_address());
return ret;
}
IPAddress EthernetClass::gatewayIP()
{
IPAddress ret;
w5500.getGatewayIp(ret.raw_address());
return ret;
}
IPAddress EthernetClass::dnsServerIP()
{
return _dnsServerAddress;
}
char* EthernetClass::dnsDomainName(){
return _dnsDomainName;
}
char* EthernetClass::hostName(){
return _hostName;
}
EthernetClass Ethernet;

@ -1,74 +0,0 @@
/*
modified 12 Aug 2013
by Soohwan Kim (suhwan@wiznet.co.kr)
- 10 Apr. 2015
Added support for Arduino Ethernet Shield 2
by Arduino.org team
*/
#ifndef ethernet_h
#define ethernet_h
#include <inttypes.h>
#include "utility/w5500.h"
#include "IPAddress.h"
#include "EthernetClient.h"
#include "EthernetServer.h"
#include "Dhcp.h"
class EthernetClass {
private:
IPAddress _dnsServerAddress;
char* _dnsDomainName;
char* _hostName;
DhcpClass* _dhcp;
public:
uint8_t w5500_cspin;
static uint8_t _state[MAX_SOCK_NUM];
static uint16_t _server_port[MAX_SOCK_NUM];
EthernetClass() { _dhcp = NULL; w5500_cspin = 10; }
void init(uint8_t _cspin = 10) { w5500_cspin = _cspin; }
#if defined(WIZ550io_WITH_MACADDRESS)
// Initialize function when use the ioShield serise (included WIZ550io)
// WIZ550io has a MAC address which is written after reset.
// Default IP, Gateway and subnet address are also writen.
// so, It needs some initial time. please refer WIZ550io Datasheet in details.
int begin(void);
void begin(IPAddress local_ip);
void begin(IPAddress local_ip, IPAddress dns_server);
void begin(IPAddress local_ip, IPAddress dns_server, IPAddress gateway);
void begin(IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet);
#else
// Initialize the Ethernet shield to use the provided MAC address and gain the rest of the
// configuration through DHCP.
// Returns 0 if the DHCP configuration failed, and 1 if it succeeded
int begin(uint8_t *mac_address);
void begin(uint8_t *mac_address, IPAddress local_ip);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet);
#endif
int maintain();
IPAddress localIP();
IPAddress subnetMask();
IPAddress gatewayIP();
IPAddress dnsServerIP();
char* dnsDomainName();
char* hostName();
friend class EthernetClient;
friend class EthernetServer;
};
extern EthernetClass Ethernet;
#endif

@ -1,168 +0,0 @@
#include "utility/w5500.h"
#include "utility/socket.h"
extern "C" {
#include "string.h"
}
#include "Arduino.h"
#include "Ethernet2.h"
#include "EthernetClient.h"
#include "EthernetServer.h"
#include "Dns.h"
uint16_t EthernetClient::_srcport = 1024;
EthernetClient::EthernetClient() : _sock(MAX_SOCK_NUM) {
}
EthernetClient::EthernetClient(uint8_t sock) : _sock(sock) {
}
int EthernetClient::connect(const char* host, uint16_t port) {
// Look up the host first
int ret = 0;
DNSClient dns;
IPAddress remote_addr;
dns.begin(Ethernet.dnsServerIP());
ret = dns.getHostByName(host, remote_addr);
if (ret == 1) {
return connect(remote_addr, port);
} else {
return ret;
}
}
int EthernetClient::connect(IPAddress ip, uint16_t port) {
if (_sock != MAX_SOCK_NUM)
return 0;
for (int i = 0; i < MAX_SOCK_NUM; i++) {
uint8_t s = w5500.readSnSR(i);
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT || s == SnSR::CLOSE_WAIT) {
_sock = i;
break;
}
}
if (_sock == MAX_SOCK_NUM)
return 0;
_srcport++;
if (_srcport == 0) _srcport = 1024;
socket(_sock, SnMR::TCP, _srcport, 0);
if (!::connect(_sock, rawIPAddress(ip), port)) {
_sock = MAX_SOCK_NUM;
return 0;
}
while (status() != SnSR::ESTABLISHED) {
delay(1);
if (status() == SnSR::CLOSED) {
_sock = MAX_SOCK_NUM;
return 0;
}
}
return 1;
}
size_t EthernetClient::write(uint8_t b) {
return write(&b, 1);
}
size_t EthernetClient::write(const uint8_t *buf, size_t size) {
if (_sock == MAX_SOCK_NUM) {
setWriteError();
return 0;
}
if (!send(_sock, buf, size)) {
setWriteError();
return 0;
}
return size;
}
int EthernetClient::available() {
if (_sock != MAX_SOCK_NUM)
return w5500.getRXReceivedSize(_sock);
return 0;
}
int EthernetClient::read() {
uint8_t b;
if ( recv(_sock, &b, 1) > 0 )
{
// recv worked
return b;
}
else
{
// No data available
return -1;
}
}
int EthernetClient::read(uint8_t *buf, size_t size) {
return recv(_sock, buf, size);
}
int EthernetClient::peek() {
uint8_t b;
// Unlike recv, peek doesn't check to see if there's any data available, so we must
if (!available())
return -1;
::peek(_sock, &b);
return b;
}
void EthernetClient::flush() {
::flush(_sock);
}
void EthernetClient::stop() {
if (_sock == MAX_SOCK_NUM)
return;
// attempt to close the connection gracefully (send a FIN to other side)
disconnect(_sock);
unsigned long start = millis();
// wait a second for the connection to close
while (status() != SnSR::CLOSED && millis() - start < 1000)
delay(1);
// if it hasn't closed, close it forcefully
if (status() != SnSR::CLOSED)
close(_sock);
EthernetClass::_server_port[_sock] = 0;
_sock = MAX_SOCK_NUM;
}
uint8_t EthernetClient::connected() {
if (_sock == MAX_SOCK_NUM) return 0;
uint8_t s = status();
return !(s == SnSR::LISTEN || s == SnSR::CLOSED || s == SnSR::FIN_WAIT ||
(s == SnSR::CLOSE_WAIT && !available()));
}
uint8_t EthernetClient::status() {
if (_sock == MAX_SOCK_NUM) return SnSR::CLOSED;
return w5500.readSnSR(_sock);
}
// the next function allows us to use the client returned by
// EthernetServer::available() as the condition in an if-statement.
EthernetClient::operator bool() {
return _sock != MAX_SOCK_NUM;
}
bool EthernetClient::operator==(const EthernetClient& rhs) {
return _sock == rhs._sock && _sock != MAX_SOCK_NUM && rhs._sock != MAX_SOCK_NUM;
}

@ -1,39 +0,0 @@
#ifndef ethernetclient_h
#define ethernetclient_h
#include "Arduino.h"
#include "Print.h"
#include "Client.h"
#include "IPAddress.h"
class EthernetClient : public Client {
public:
EthernetClient();
EthernetClient(uint8_t sock);
uint8_t status();
virtual int connect(IPAddress ip, uint16_t port);
virtual int connect(const char *host, uint16_t port);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
virtual int available();
virtual int read();
virtual int read(uint8_t *buf, size_t size);
virtual int peek();
virtual void flush();
virtual void stop();
virtual uint8_t connected();
virtual operator bool();
virtual bool operator==(const EthernetClient&);
virtual bool operator!=(const EthernetClient& rhs) { return !this->operator==(rhs); };
friend class EthernetServer;
using Print::write;
private:
static uint16_t _srcport;
uint8_t _sock;
};
#endif

@ -1,91 +0,0 @@
#include "utility/w5500.h"
#include "utility/socket.h"
extern "C" {
#include "string.h"
}
#include "Ethernet2.h"
#include "EthernetClient.h"
#include "EthernetServer.h"
EthernetServer::EthernetServer(uint16_t port)
{
_port = port;
}
void EthernetServer::begin()
{
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
if (client.status() == SnSR::CLOSED) {
socket(sock, SnMR::TCP, _port, 0);
listen(sock);
EthernetClass::_server_port[sock] = _port;
break;
}
}
}
void EthernetServer::accept()
{
int listening = 0;
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
if (EthernetClass::_server_port[sock] == _port) {
if (client.status() == SnSR::LISTEN) {
listening = 1;
}
else if (client.status() == SnSR::CLOSE_WAIT && !client.available()) {
client.stop();
}
}
}
if (!listening) {
begin();
}
}
EthernetClient EthernetServer::available()
{
accept();
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
if (EthernetClass::_server_port[sock] == _port &&
(client.status() == SnSR::ESTABLISHED ||
client.status() == SnSR::CLOSE_WAIT)) {
if (client.available()) {
// XXX: don't always pick the lowest numbered socket.
return client;
}
}
}
return EthernetClient(MAX_SOCK_NUM);
}
size_t EthernetServer::write(uint8_t b)
{
return write(&b, 1);
}
size_t EthernetServer::write(const uint8_t *buffer, size_t size)
{
size_t n = 0;
accept();
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
if (EthernetClass::_server_port[sock] == _port &&
client.status() == SnSR::ESTABLISHED) {
n += client.write(buffer, size);
}
}
return n;
}

@ -1,22 +0,0 @@
#ifndef ethernetserver_h
#define ethernetserver_h
#include "Server.h"
class EthernetClient;
class EthernetServer :
public Server {
private:
uint16_t _port;
void accept();
public:
EthernetServer(uint16_t);
EthernetClient available();
virtual void begin();
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
using Print::write;
};
#endif

@ -1,222 +0,0 @@
/*
* Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
* This version only offers minimal wrapping of socket.c/socket.h
* Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*
* - 10 Apr. 2015
* Added support for Arduino Ethernet Shield 2
* by Arduino.org team
*/
#include "utility/w5500.h"
#include "utility/socket.h"
#include "Ethernet2.h"
#include "Udp.h"
#include "Dns.h"
/* Constructor */
EthernetUDP::EthernetUDP() : _sock(MAX_SOCK_NUM) {}
/* Start EthernetUDP socket, listening at local port PORT */
uint8_t EthernetUDP::begin(uint16_t port) {
if (_sock != MAX_SOCK_NUM)
return 0;
for (int i = 0; i < MAX_SOCK_NUM; i++) {
uint8_t s = w5500.readSnSR(i);
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT) {
_sock = i;
break;
}
}
if (_sock == MAX_SOCK_NUM)
return 0;
_port = port;
_remaining = 0;
socket(_sock, SnMR::UDP, _port, 0);
return 1;
}
/* return number of bytes available in the current packet,
will return zero if parsePacket hasn't been called yet */
int EthernetUDP::available() {
return _remaining;
}
/* Release any resources being used by this EthernetUDP instance */
void EthernetUDP::stop()
{
if (_sock == MAX_SOCK_NUM)
return;
close(_sock);
EthernetClass::_server_port[_sock] = 0;
_sock = MAX_SOCK_NUM;
}
int EthernetUDP::beginPacket(const char *host, uint16_t port)
{
// Look up the host first
int ret = 0;
DNSClient dns;
IPAddress remote_addr;
dns.begin(Ethernet.dnsServerIP());
ret = dns.getHostByName(host, remote_addr);
if (ret == 1) {
return beginPacket(remote_addr, port);
} else {
return ret;
}
}
int EthernetUDP::beginPacket(IPAddress ip, uint16_t port)
{
_offset = 0;
return startUDP(_sock, rawIPAddress(ip), port);
}
int EthernetUDP::endPacket()
{
return sendUDP(_sock);
}
size_t EthernetUDP::write(uint8_t byte)
{
return write(&byte, 1);
}
size_t EthernetUDP::write(const uint8_t *buffer, size_t size)
{
uint16_t bytes_written = bufferData(_sock, _offset, buffer, size);
_offset += bytes_written;
return bytes_written;
}
int EthernetUDP::parsePacket()
{
// discard any remaining bytes in the last packet
flush();
if (w5500.getRXReceivedSize(_sock) > 0)
{
//HACK - hand-parse the UDP packet using TCP recv method
uint8_t tmpBuf[8];
int ret =0;
//read 8 header bytes and get IP and port from it
ret = recv(_sock,tmpBuf,8);
if (ret > 0)
{
_remoteIP = tmpBuf;
_remotePort = tmpBuf[4];
_remotePort = (_remotePort << 8) + tmpBuf[5];
_remaining = tmpBuf[6];
_remaining = (_remaining << 8) + tmpBuf[7];
// When we get here, any remaining bytes are the data
ret = _remaining;
}
return ret;
}
// There aren't any packets available
return 0;
}
int EthernetUDP::read()
{
uint8_t byte;
if ((_remaining > 0) && (recv(_sock, &byte, 1) > 0))
{
// We read things without any problems
_remaining--;
return byte;
}
// If we get here, there's no data available
return -1;
}
int EthernetUDP::read(unsigned char* buffer, size_t len)
{
if (_remaining > 0)
{
int got;
if (_remaining <= len)
{
// data should fit in the buffer
got = recv(_sock, buffer, _remaining);
}
else
{
// too much data for the buffer,
// grab as much as will fit
got = recv(_sock, buffer, len);
}
if (got > 0)
{
_remaining -= got;
return got;
}
}
// If we get here, there's no data available or recv failed
return -1;
}
int EthernetUDP::peek()
{
uint8_t b;
// Unlike recv, peek doesn't check to see if there's any data available, so we must.
// If the user hasn't called parsePacket yet then return nothing otherwise they
// may get the UDP header
if (!_remaining)
return -1;
::peek(_sock, &b);
return b;
}
void EthernetUDP::flush()
{
// could this fail (loop endlessly) if _remaining > 0 and recv in read fails?
// should only occur if recv fails after telling us the data is there, lets
// hope the w5500 always behaves :)
while (_remaining)
{
read();
}
}

@ -1,105 +0,0 @@
/*
* Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
* This version only offers minimal wrapping of socket.c/socket.h
* Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
*
* NOTE: UDP is fast, but has some important limitations (thanks to Warren Gray for mentioning these)
* 1) UDP does not guarantee the order in which assembled UDP packets are received. This
* might not happen often in practice, but in larger network topologies, a UDP
* packet can be received out of sequence.
* 2) UDP does not guard against lost packets - so packets *can* disappear without the sender being
* aware of it. Again, this may not be a concern in practice on small local networks.
* For more information, see http://www.cafeaulait.org/course/week12/35.html
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*
* - 10 Apr. 2015
* Added support for Arduino Ethernet Shield 2
* by Arduino.org team
*
*/
#ifndef ethernetudp_h
#define ethernetudp_h
#include <Udp.h>
#define UDP_TX_PACKET_MAX_SIZE 24
class EthernetUDP : public UDP {
private:
uint8_t _sock; // socket ID for Wiz5100
uint16_t _port; // local port to listen on
IPAddress _remoteIP; // remote IP address for the incoming packet whilst it's being processed
uint16_t _remotePort; // remote port for the incoming packet whilst it's being processed
uint16_t _offset; // offset into the packet being sent
uint16_t _remaining; // remaining bytes of incoming packet yet to be processed
public:
EthernetUDP(); // Constructor
virtual uint8_t begin(uint16_t); // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
virtual void stop(); // Finish with the UDP socket
// Sending UDP packets
// Start building up a packet to send to the remote host specific in ip and port
// Returns 1 if successful, 0 if there was a problem with the supplied IP address or port
virtual int beginPacket(IPAddress ip, uint16_t port);
// Start building up a packet to send to the remote host specific in host and port
// Returns 1 if successful, 0 if there was a problem resolving the hostname or port
virtual int beginPacket(const char *host, uint16_t port);
// Finish off this packet and send it
// Returns 1 if the packet was sent successfully, 0 if there was an error
virtual int endPacket();
// Write a single byte into the packet
virtual size_t write(uint8_t);
// Write size bytes from buffer into the packet
virtual size_t write(const uint8_t *buffer, size_t size);
using Print::write;
// Start processing the next available incoming packet
// Returns the size of the packet in bytes, or 0 if no packets are available
virtual int parsePacket();
// Number of bytes remaining in the current packet
virtual int available();
// Read a single byte from the current packet
virtual int read();
// Read up to len bytes from the current packet and place them into buffer
// Returns the number of bytes read, or 0 if none are available
virtual int read(unsigned char* buffer, size_t len);
// Read up to len characters from the current packet and place them into buffer
// Returns the number of characters read, or 0 if none are available
virtual int read(char* buffer, size_t len) { return read((unsigned char*)buffer, len); };
// Return the next byte from the current packet without moving on to the next byte
virtual int peek();
virtual void flush(); // Finish reading the current packet
// Return the IP address of the host who sent the current incoming packet
virtual IPAddress remoteIP() { return _remoteIP; };
// Return the port of the host who sent the current incoming packet
virtual uint16_t remotePort() { return _remotePort; };
};
#endif

@ -1,91 +0,0 @@
/*
Twitter.cpp - Arduino library to Post messages to Twitter using OAuth.
Copyright (c) NeoCat 2010-2011. All right reserved.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
// ver1.2 - Use <string.h>
// ver1.3 - Support IDE 1.0
#include <string.h>
#include "Twitter.h"
#define LIB_DOMAIN "arduino-tweet.appspot.com"
#if defined(ARDUINO) && ARDUINO < 100
static uint8_t server[] = {0,0,0,0}; // IP address of LIB_DOMAIN
Twitter::Twitter(const char *token) : client(server, 80), token(token)
{
}
#else
Twitter::Twitter(const char *token) : token(token)
{
}
#endif
bool Twitter::post(const char *msg)
{
#if defined(ARDUINO) && ARDUINO < 100
DNSError err = EthernetDNS.resolveHostName(LIB_DOMAIN, server);
if (err != DNSSuccess) {
return false;
}
#endif
parseStatus = 0;
statusCode = 0;
#if defined(ARDUINO) && ARDUINO < 100
if (client.connect()) {
#else
if (client.connect(LIB_DOMAIN, 80)) {
#endif
client.println("POST http://" LIB_DOMAIN "/update HTTP/1.0");
client.print("Content-Length: ");
client.println(strlen(msg)+strlen(token)+14);
client.println();
client.print("token=");
client.print(token);
client.print("&status=");
client.println(msg);
} else {
return false;
}
return true;
}
bool Twitter::checkStatus(Print *debug)
{
if (!client.connected()) {
if (debug)
while(client.available())
debug->print((char)client.read());
client.flush();
client.stop();
return false;
}
if (!client.available())
return true;
char c = client.read();
if (debug)
debug->print(c);
switch(parseStatus) {
case 0:
if (c == ' ') parseStatus++; break; // skip "HTTP/1.1 "
case 1:
if (c >= '0' && c <= '9') {
statusCode *= 10;
statusCode += c - '0';
} else {
parseStatus++;
}
}
return true;
}
int Twitter::wait(Print *debug)
{
while (checkStatus(debug));
return statusCode;
}

@ -1,49 +0,0 @@
/*
Twitter.cpp - Arduino library to Post messages to Twitter using OAuth.
Copyright (c) NeoCat 2010-2011. All right reserved.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
// ver1.2 - Use <Udp.h> to support IDE 0019 or later
// ver1.3 - Support IDE 1.0
#ifndef TWITTER_H
#define TWITTER_H
#include <inttypes.h>
#if defined(__AVR__)
#include <avr/pgmspace.h>
#endif
#if defined(ARDUINO) && ARDUINO > 18 // Arduino 0019 or later
#include <SPI.h>
#endif
#include <Ethernet2.h>
#if defined(ARDUINO) && ARDUINO < 100 // earlier than Arduino 1.0
#include <EthernetDNS.h>
#endif
class Twitter
{
private:
uint8_t parseStatus;
int statusCode;
const char *token;
#if defined(ARDUINO) && ARDUINO < 100
Client client;
#else
EthernetClient client;
#endif
public:
Twitter(const char *user_and_passwd);
bool post(const char *msg);
bool checkStatus(Print *debug = NULL);
int wait(Print *debug = NULL);
int status(void) { return statusCode; }
};
#endif //TWITTER_H

@ -1,13 +0,0 @@
#ifndef UTIL_H
#define UTIL_H
#define htons(x) ( ((x)<<8) | (((x)>>8)&0xFF) )
#define ntohs(x) htons(x)
#define htonl(x) ( ((x)<<24 & 0xFF000000UL) | \
((x)<< 8 & 0x00FF0000UL) | \
((x)>> 8 & 0x0000FF00UL) | \
((x)>>24 & 0x000000FFUL) )
#define ntohl(x) htonl(x)
#endif

@ -1,412 +0,0 @@
/*
* - 10 Apr. 2015
* Added support for Arduino Ethernet Shield 2
* by Arduino.org team
*/
#include "utility/w5500.h"
#include "utility/socket.h"
static uint16_t local_port;
/**
* @brief This Socket function initialize the channel in perticular mode, and set the port and wait for w5500 done it.
* @return 1 for success else 0.
*/
uint8_t socket(SOCKET s, uint8_t protocol, uint16_t port, uint8_t flag)
{
if ((protocol == SnMR::TCP) || (protocol == SnMR::UDP) || (protocol == SnMR::IPRAW) || (protocol == SnMR::MACRAW) || (protocol == SnMR::PPPOE))
{
close(s);
w5500.writeSnMR(s, protocol | flag);
if (port != 0) {
w5500.writeSnPORT(s, port);
}
else {
local_port++; // if don't set the source port, set local_port number.
w5500.writeSnPORT(s, local_port);
}
w5500.execCmdSn(s, Sock_OPEN);
return 1;
}
return 0;
}
/**
* @brief This function close the socket and parameter is "s" which represent the socket number
*/
void close(SOCKET s)
{
w5500.execCmdSn(s, Sock_CLOSE);
w5500.writeSnIR(s, 0xFF);
}
/**
* @brief This function established the connection for the channel in passive (server) mode. This function waits for the request from the peer.
* @return 1 for success else 0.
*/
uint8_t listen(SOCKET s)
{
if (w5500.readSnSR(s) != SnSR::INIT)
return 0;
w5500.execCmdSn(s, Sock_LISTEN);
return 1;
}
/**
* @brief This function established the connection for the channel in Active (client) mode.
* This function waits for the untill the connection is established.
*
* @return 1 for success else 0.
*/
uint8_t connect(SOCKET s, uint8_t * addr, uint16_t port)
{
if
(
((addr[0] == 0xFF) && (addr[1] == 0xFF) && (addr[2] == 0xFF) && (addr[3] == 0xFF)) ||
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
(port == 0x00)
)
return 0;
// set destination IP
w5500.writeSnDIPR(s, addr);
w5500.writeSnDPORT(s, port);
w5500.execCmdSn(s, Sock_CONNECT);
return 1;
}
/**
* @brief This function used for disconnect the socket and parameter is "s" which represent the socket number
* @return 1 for success else 0.
*/
void disconnect(SOCKET s)
{
w5500.execCmdSn(s, Sock_DISCON);
}
/**
* @brief This function used to send the data in TCP mode
* @return 1 for success else 0.
*/
uint16_t send(SOCKET s, const uint8_t * buf, uint16_t len)
{
uint8_t status=0;
uint16_t ret=0;
uint16_t freesize=0;
if (len > w5500.SSIZE)
ret = w5500.SSIZE; // check size not to exceed MAX size.
else
ret = len;
// if freebuf is available, start.
do
{
freesize = w5500.getTXFreeSize(s);
status = w5500.readSnSR(s);
if ((status != SnSR::ESTABLISHED) && (status != SnSR::CLOSE_WAIT))
{
ret = 0;
break;
}
}
while (freesize < ret);
// copy data
w5500.send_data_processing(s, (uint8_t *)buf, ret);
w5500.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ( (w5500.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
{
/* m2008.01 [bj] : reduce code */
if ( w5500.readSnSR(s) == SnSR::CLOSED )
{
close(s);
return 0;
}
}
/* +2008.01 bj */
w5500.writeSnIR(s, SnIR::SEND_OK);
return ret;
}
/**
* @brief This function is an application I/F function which is used to receive the data in TCP mode.
* It continues to wait for data as much as the application wants to receive.
*
* @return received data size for success else -1.
*/
int16_t recv(SOCKET s, uint8_t *buf, int16_t len)
{
// Check how much data is available
int16_t ret = w5500.getRXReceivedSize(s);
if ( ret == 0 )
{
// No data available.
uint8_t status = w5500.readSnSR(s);
if ( status == SnSR::LISTEN || status == SnSR::CLOSED || status == SnSR::CLOSE_WAIT )
{
// The remote end has closed its side of the connection, so this is the eof state
ret = 0;
}
else
{
// The connection is still up, but there's no data waiting to be read
ret = -1;
}
}
else if (ret > len)
{
ret = len;
}
if ( ret > 0 )
{
w5500.recv_data_processing(s, buf, ret);
w5500.execCmdSn(s, Sock_RECV);
}
return ret;
}
/**
* @brief Returns the first byte in the receive queue (no checking)
*
* @return
*/
uint16_t peek(SOCKET s, uint8_t *buf)
{
w5500.recv_data_processing(s, buf, 1, 1);
return 1;
}
/**
* @brief This function is an application I/F function which is used to send the data for other then TCP mode.
* Unlike TCP transmission, The peer's destination address and the port is needed.
*
* @return This function return send data size for success else -1.
*/
uint16_t sendto(SOCKET s, const uint8_t *buf, uint16_t len, uint8_t *addr, uint16_t port)
{
uint16_t ret=0;
if (len > w5500.SSIZE) ret = w5500.SSIZE; // check size not to exceed MAX size.
else ret = len;
if
(
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
((port == 0x00)) ||(ret == 0)
)
{
/* +2008.01 [bj] : added return value */
ret = 0;
}
else
{
w5500.writeSnDIPR(s, addr);
w5500.writeSnDPORT(s, port);
// copy data
w5500.send_data_processing(s, (uint8_t *)buf, ret);
w5500.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ( (w5500.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
{
if (w5500.readSnIR(s) & SnIR::TIMEOUT)
{
/* +2008.01 [bj]: clear interrupt */
w5500.writeSnIR(s, (SnIR::SEND_OK | SnIR::TIMEOUT)); /* clear SEND_OK & TIMEOUT */
return 0;
}
}
/* +2008.01 bj */
w5500.writeSnIR(s, SnIR::SEND_OK);
}
return ret;
}
/**
* @brief This function is an application I/F function which is used to receive the data in other then
* TCP mode. This function is used to receive UDP, IP_RAW and MAC_RAW mode, and handle the header as well.
*
* @return This function return received data size for success else -1.
*/
uint16_t recvfrom(SOCKET s, uint8_t *buf, uint16_t len, uint8_t *addr, uint16_t *port)
{
uint8_t head[8];
uint16_t data_len=0;
uint16_t ptr=0;
if ( len > 0 )
{
ptr = w5500.readSnRX_RD(s);
switch (w5500.readSnMR(s) & 0x07)
{
case SnMR::UDP :
w5500.read_data(s, ptr, head, 0x08);
ptr += 8;
// read peer's IP address, port number.
addr[0] = head[0];
addr[1] = head[1];
addr[2] = head[2];
addr[3] = head[3];
*port = head[4];
*port = (*port << 8) + head[5];
data_len = head[6];
data_len = (data_len << 8) + head[7];
w5500.read_data(s, ptr, buf, data_len); // data copy.
ptr += data_len;
w5500.writeSnRX_RD(s, ptr);
break;
case SnMR::IPRAW :
w5500.read_data(s, ptr, head, 0x06);
ptr += 6;
addr[0] = head[0];
addr[1] = head[1];
addr[2] = head[2];
addr[3] = head[3];
data_len = head[4];
data_len = (data_len << 8) + head[5];
w5500.read_data(s, ptr, buf, data_len); // data copy.
ptr += data_len;
w5500.writeSnRX_RD(s, ptr);
break;
case SnMR::MACRAW:
w5500.read_data(s, ptr, head, 2);
ptr+=2;
data_len = head[0];
data_len = (data_len<<8) + head[1] - 2;
w5500.read_data(s, ptr, buf, data_len);
ptr += data_len;
w5500.writeSnRX_RD(s, ptr);
break;
default :
break;
}
w5500.execCmdSn(s, Sock_RECV);
}
return data_len;
}
/**
* @brief Wait for buffered transmission to complete.
*/
void flush(SOCKET s) {
// TODO
}
uint16_t igmpsend(SOCKET s, const uint8_t * buf, uint16_t len)
{
uint8_t status=0;
uint16_t ret=0;
if (len > w5500.SSIZE)
ret = w5500.SSIZE; // check size not to exceed MAX size.
else
ret = len;
if (ret == 0)
return 0;
w5500.send_data_processing(s, (uint8_t *)buf, ret);
w5500.execCmdSn(s, Sock_SEND);
while ( (w5500.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
{
status = w5500.readSnSR(s);
if (w5500.readSnIR(s) & SnIR::TIMEOUT)
{
/* in case of igmp, if send fails, then socket closed */
/* if you want change, remove this code. */
close(s);
return 0;
}
}
w5500.writeSnIR(s, SnIR::SEND_OK);
return ret;
}
uint16_t bufferData(SOCKET s, uint16_t offset, const uint8_t* buf, uint16_t len)
{
uint16_t ret =0;
if (len > w5500.getTXFreeSize(s))
{
ret = w5500.getTXFreeSize(s); // check size not to exceed MAX size.
}
else
{
ret = len;
}
w5500.send_data_processing_offset(s, offset, buf, ret);
return ret;
}
int startUDP(SOCKET s, uint8_t* addr, uint16_t port)
{
if
(
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
((port == 0x00))
)
{
return 0;
}
else
{
w5500.writeSnDIPR(s, addr);
w5500.writeSnDPORT(s, port);
return 1;
}
}
int sendUDP(SOCKET s)
{
w5500.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ( (w5500.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
{
if (w5500.readSnIR(s) & SnIR::TIMEOUT)
{
/* +2008.01 [bj]: clear interrupt */
w5500.writeSnIR(s, (SnIR::SEND_OK|SnIR::TIMEOUT));
return 0;
}
}
/* +2008.01 bj */
w5500.writeSnIR(s, SnIR::SEND_OK);
/* Sent ok */
return 1;
}

@ -1,48 +0,0 @@
/*
* - 10 Apr. 2015
* Added support for Arduino Ethernet Shield 2
* by Arduino.org team
*/
#ifndef _SOCKET_H_
#define _SOCKET_H_
#include "utility/w5500.h"
extern uint8_t socket(SOCKET s, uint8_t protocol, uint16_t port, uint8_t flag); // Opens a socket(TCP or UDP or IP_RAW mode)
extern void close(SOCKET s); // Close socket
extern uint8_t connect(SOCKET s, uint8_t * addr, uint16_t port); // Establish TCP connection (Active connection)
extern void disconnect(SOCKET s); // disconnect the connection
extern uint8_t listen(SOCKET s); // Establish TCP connection (Passive connection)
extern uint16_t send(SOCKET s, const uint8_t * buf, uint16_t len); // Send data (TCP)
extern int16_t recv(SOCKET s, uint8_t * buf, int16_t len); // Receive data (TCP)
extern uint16_t peek(SOCKET s, uint8_t *buf);
extern uint16_t sendto(SOCKET s, const uint8_t * buf, uint16_t len, uint8_t * addr, uint16_t port); // Send data (UDP/IP RAW)
extern uint16_t recvfrom(SOCKET s, uint8_t * buf, uint16_t len, uint8_t * addr, uint16_t *port); // Receive data (UDP/IP RAW)
extern void flush(SOCKET s); // Wait for transmission to complete
extern uint16_t igmpsend(SOCKET s, const uint8_t * buf, uint16_t len);
// Functions to allow buffered UDP send (i.e. where the UDP datagram is built up over a
// number of calls before being sent
/*
@brief This function sets up a UDP datagram, the data for which will be provided by one
or more calls to bufferData and then finally sent with sendUDP.
@return 1 if the datagram was successfully set up, or 0 if there was an error
*/
extern int startUDP(SOCKET s, uint8_t* addr, uint16_t port);
/*
@brief This function copies up to len bytes of data from buf into a UDP datagram to be
sent later by sendUDP. Allows datagrams to be built up from a series of bufferData calls.
@return Number of bytes successfully buffered
*/
uint16_t bufferData(SOCKET s, uint16_t offset, const uint8_t* buf, uint16_t len);
/*
@brief Send a UDP datagram built up from a sequence of startUDP followed by one or more
calls to bufferData.
@return 1 if the datagram was successfully sent, or 0 if there was an error
*/
int sendUDP(SOCKET s);
#endif
/* _SOCKET_H_ */

@ -1,14 +0,0 @@
#ifndef UTIL_H
#define UTIL_H
#define htons(x) ( ((x)<< 8 & 0xFF00) | \
((x)>> 8 & 0x00FF) )
#define ntohs(x) htons(x)
#define htonl(x) ( ((x)<<24 & 0xFF000000UL) | \
((x)<< 8 & 0x00FF0000UL) | \
((x)>> 8 & 0x0000FF00UL) | \
((x)>>24 & 0x000000FFUL) )
#define ntohl(x) htonl(x)
#endif

@ -1,187 +0,0 @@
/*
* Copyright (c) 2010 by WIZnet <support@wiznet.co.kr>
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*
* - 10 Apr. 2015
* Added support for Arduino Ethernet Shield 2
* by Arduino.org team
*/
#include <stdio.h>
#include <string.h>
#include "Arduino.h"
#include "utility/w5500.h"
//#if defined(W5500_ETHERNET_SHIELD)
// W5500 controller instance
W5500Class w5500;
// SPI details
SPISettings wiznet_SPI_settings(8000000, MSBFIRST, SPI_MODE0);
uint8_t SPI_CS;
void W5500Class::init(uint8_t ss_pin)
{
SPI_CS = ss_pin;
delay(1000);
initSS();
SPI.begin();
w5500.swReset();
for (int i=0; i<MAX_SOCK_NUM; i++) {
uint8_t cntl_byte = (0x0C + (i<<5));
write( 0x1E, cntl_byte, 2); //0x1E - Sn_RXBUF_SIZE
write( 0x1F, cntl_byte, 2); //0x1F - Sn_TXBUF_SIZE
}
}
uint16_t W5500Class::getTXFreeSize(SOCKET s)
{
uint16_t val=0, val1=0;
do {
val1 = readSnTX_FSR(s);
if (val1 != 0)
val = readSnTX_FSR(s);
}
while (val != val1);
return val;
}
uint16_t W5500Class::getRXReceivedSize(SOCKET s)
{
uint16_t val=0,val1=0;
do {
val1 = readSnRX_RSR(s);
if (val1 != 0)
val = readSnRX_RSR(s);
}
while (val != val1);
return val;
}
void W5500Class::send_data_processing(SOCKET s, const uint8_t *data, uint16_t len)
{
// This is same as having no offset in a call to send_data_processing_offset
send_data_processing_offset(s, 0, data, len);
}
void W5500Class::send_data_processing_offset(SOCKET s, uint16_t data_offset, const uint8_t *data, uint16_t len)
{
uint16_t ptr = readSnTX_WR(s);
uint8_t cntl_byte = (0x14+(s<<5));
ptr += data_offset;
write(ptr, cntl_byte, data, len);
ptr += len;
writeSnTX_WR(s, ptr);
}
void W5500Class::recv_data_processing(SOCKET s, uint8_t *data, uint16_t len, uint8_t peek)
{
uint16_t ptr;
ptr = readSnRX_RD(s);
read_data(s, ptr, data, len);
if (!peek)
{
ptr += len;
writeSnRX_RD(s, ptr);
}
}
void W5500Class::read_data(SOCKET s, volatile uint16_t src, volatile uint8_t *dst, uint16_t len)
{
uint8_t cntl_byte = (0x18+(s<<5));
read((uint16_t)src , cntl_byte, (uint8_t *)dst, len);
}
uint8_t W5500Class::write(uint16_t _addr, uint8_t _cb, uint8_t _data)
{
SPI.beginTransaction(wiznet_SPI_settings);
setSS();
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
SPI.transfer(_cb);
SPI.transfer(_data);
resetSS();
SPI.endTransaction();
return 1;
}
uint16_t W5500Class::write(uint16_t _addr, uint8_t _cb, const uint8_t *_buf, uint16_t _len)
{
SPI.beginTransaction(wiznet_SPI_settings);
setSS();
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
SPI.transfer(_cb);
for (uint16_t i=0; i<_len; i++){
SPI.transfer(_buf[i]);
}
resetSS();
SPI.endTransaction();
return _len;
}
uint8_t W5500Class::read(uint16_t _addr, uint8_t _cb)
{
SPI.beginTransaction(wiznet_SPI_settings);
setSS();
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
SPI.transfer(_cb);
uint8_t _data = SPI.transfer(0);
resetSS();
SPI.endTransaction();
return _data;
}
uint16_t W5500Class::read(uint16_t _addr, uint8_t _cb, uint8_t *_buf, uint16_t _len)
{
SPI.beginTransaction(wiznet_SPI_settings);
setSS();
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
SPI.transfer(_cb);
for (uint16_t i=0; i<_len; i++){
_buf[i] = SPI.transfer(0);
}
resetSS();
SPI.endTransaction();
return _len;
}
void W5500Class::execCmdSn(SOCKET s, SockCMD _cmd) {
// Send command to socket
writeSnCR(s, _cmd);
// Wait for command to complete
while (readSnCR(s))
;
}
uint8_t W5500Class::readVersion(void)
{
SPI.beginTransaction(wiznet_SPI_settings);
setSS();
SPI.transfer( 0x00 );
SPI.transfer( 0x39 );
SPI.transfer( 0x01);
uint8_t _data = SPI.transfer(0);
resetSS();
SPI.endTransaction();
return _data;
}
//#endif

@ -1,420 +0,0 @@
/*
* Copyright (c) 2010 by WIZnet <support@wiznet.co.kr>
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*
* - 10 Apr. 2015
* Added support for Arduino Ethernet Shield 2
* by Arduino.org team
*/
#ifndef W5500_H_INCLUDED
#define W5500_H_INCLUDED
#define MAX_SOCK_NUM 8
#include <Arduino.h>
#include <SPI.h>
extern uint8_t SPI_CS;
typedef uint8_t SOCKET;
/*
class MR {
public:
static const uint8_t RST = 0x80;
static const uint8_t PB = 0x10;
static const uint8_t PPPOE = 0x08;
static const uint8_t LB = 0x04;
static const uint8_t AI = 0x02;
static const uint8_t IND = 0x01;
};
*/
/*
class IR {
public:
static const uint8_t CONFLICT = 0x80;
static const uint8_t UNREACH = 0x40;
static const uint8_t PPPoE = 0x20;
static const uint8_t SOCK0 = 0x01;
static const uint8_t SOCK1 = 0x02;
static const uint8_t SOCK2 = 0x04;
static const uint8_t SOCK3 = 0x08;
static inline uint8_t SOCK(SOCKET ch) { return (0x01 << ch); };
};
*/
class SnMR {
public:
static const uint8_t CLOSE = 0x00;
static const uint8_t TCP = 0x01;
static const uint8_t UDP = 0x02;
static const uint8_t IPRAW = 0x03;
static const uint8_t MACRAW = 0x04;
static const uint8_t PPPOE = 0x05;
static const uint8_t ND = 0x20;
static const uint8_t MULTI = 0x80;
};
enum SockCMD {
Sock_OPEN = 0x01,
Sock_LISTEN = 0x02,
Sock_CONNECT = 0x04,
Sock_DISCON = 0x08,
Sock_CLOSE = 0x10,
Sock_SEND = 0x20,
Sock_SEND_MAC = 0x21,
Sock_SEND_KEEP = 0x22,
Sock_RECV = 0x40
};
/*class SnCmd {
public:
static const uint8_t OPEN = 0x01;
static const uint8_t LISTEN = 0x02;
static const uint8_t CONNECT = 0x04;
static const uint8_t DISCON = 0x08;
static const uint8_t CLOSE = 0x10;
static const uint8_t SEND = 0x20;
static const uint8_t SEND_MAC = 0x21;
static const uint8_t SEND_KEEP = 0x22;
static const uint8_t RECV = 0x40;
};
*/
class SnIR {
public:
static const uint8_t SEND_OK = 0x10;
static const uint8_t TIMEOUT = 0x08;
static const uint8_t RECV = 0x04;
static const uint8_t DISCON = 0x02;
static const uint8_t CON = 0x01;
};
class SnSR {
public:
static const uint8_t CLOSED = 0x00;
static const uint8_t INIT = 0x13;
static const uint8_t LISTEN = 0x14;
static const uint8_t SYNSENT = 0x15;
static const uint8_t SYNRECV = 0x16;
static const uint8_t ESTABLISHED = 0x17;
static const uint8_t FIN_WAIT = 0x18;
static const uint8_t CLOSING = 0x1A;
static const uint8_t TIME_WAIT = 0x1B;
static const uint8_t CLOSE_WAIT = 0x1C;
static const uint8_t LAST_ACK = 0x1D;
static const uint8_t UDP = 0x22;
static const uint8_t IPRAW = 0x32;
static const uint8_t MACRAW = 0x42;
static const uint8_t PPPOE = 0x5F;
};
class IPPROTO {
public:
static const uint8_t IP = 0;
static const uint8_t ICMP = 1;
static const uint8_t IGMP = 2;
static const uint8_t GGP = 3;
static const uint8_t TCP = 6;
static const uint8_t PUP = 12;
static const uint8_t UDP = 17;
static const uint8_t IDP = 22;
static const uint8_t ND = 77;
static const uint8_t RAW = 255;
};
class W5500Class {
public:
void init(uint8_t ss_pin = 10);
uint8_t readVersion(void);
/**
* @brief This function is being used for copy the data form Receive buffer of the chip to application buffer.
*
* It calculate the actual physical address where one has to read
* the data from Receive buffer. Here also take care of the condition while it exceed
* the Rx memory uper-bound of socket.
*/
void read_data(SOCKET s, volatile uint16_t src, volatile uint8_t * dst, uint16_t len);
/**
* @brief This function is being called by send() and sendto() function also.
*
* This function read the Tx write pointer register and after copy the data in buffer update the Tx write pointer
* register. User should read upper byte first and lower byte later to get proper value.
*/
void send_data_processing(SOCKET s, const uint8_t *data, uint16_t len);
/**
* @brief A copy of send_data_processing that uses the provided ptr for the
* write offset. Only needed for the "streaming" UDP API, where
* a single UDP packet is built up over a number of calls to
* send_data_processing_ptr, because TX_WR doesn't seem to get updated
* correctly in those scenarios
* @param ptr value to use in place of TX_WR. If 0, then the value is read
* in from TX_WR
* @return New value for ptr, to be used in the next call
*/
// FIXME Update documentation
void send_data_processing_offset(SOCKET s, uint16_t data_offset, const uint8_t *data, uint16_t len);
/**
* @brief This function is being called by recv() also.
*
* This function read the Rx read pointer register
* and after copy the data from receive buffer update the Rx write pointer register.
* User should read upper byte first and lower byte later to get proper value.
*/
void recv_data_processing(SOCKET s, uint8_t *data, uint16_t len, uint8_t peek = 0);
inline void setGatewayIp(uint8_t *_addr);
inline void getGatewayIp(uint8_t *_addr);
inline void setSubnetMask(uint8_t *_addr);
inline void getSubnetMask(uint8_t *_addr);
inline void setMACAddress(uint8_t * addr);
inline void getMACAddress(uint8_t * addr);
inline void setIPAddress(uint8_t * addr);
inline void getIPAddress(uint8_t * addr);
inline void setRetransmissionTime(uint16_t timeout);
inline void setRetransmissionCount(uint8_t _retry);
inline void swReset();
inline void setPHYCFGR(uint8_t _val);
inline uint8_t getPHYCFGR();
void execCmdSn(SOCKET s, SockCMD _cmd);
uint16_t getTXFreeSize(SOCKET s);
uint16_t getRXReceivedSize(SOCKET s);
// W5500 Registers
// ---------------
private:
static uint8_t write(uint16_t _addr, uint8_t _cb, uint8_t _data);
static uint16_t write(uint16_t _addr, uint8_t _cb, const uint8_t *buf, uint16_t len);
static uint8_t read(uint16_t _addr, uint8_t _cb );
static uint16_t read(uint16_t _addr, uint8_t _cb, uint8_t *buf, uint16_t len);
#define __GP_REGISTER8(name, address) \
static inline void write##name(uint8_t _data) { \
write(address, 0x04, _data); \
} \
static inline uint8_t read##name() { \
return read(address, 0x00); \
}
#define __GP_REGISTER16(name, address) \
static void write##name(uint16_t _data) { \
write(address, 0x04, _data >> 8); \
write(address+1, 0x04, _data & 0xFF); \
} \
static uint16_t read##name() { \
uint16_t res = read(address, 0x00); \
res = (res << 8) + read(address + 1, 0x00); \
return res; \
}
#define __GP_REGISTER_N(name, address, size) \
static uint16_t write##name(uint8_t *_buff) { \
return write(address, 0x04, _buff, size); \
} \
static uint16_t read##name(uint8_t *_buff) { \
return read(address, 0x00, _buff, size); \
}
public:
__GP_REGISTER8 (MR, 0x0000); // Mode
__GP_REGISTER_N(GAR, 0x0001, 4); // Gateway IP address
__GP_REGISTER_N(SUBR, 0x0005, 4); // Subnet mask address
__GP_REGISTER_N(SHAR, 0x0009, 6); // Source MAC address
__GP_REGISTER_N(SIPR, 0x000F, 4); // Source IP address
__GP_REGISTER8 (IR, 0x0015); // Interrupt
__GP_REGISTER8 (IMR, 0x0016); // Interrupt Mask
__GP_REGISTER16(RTR, 0x0019); // Timeout address
__GP_REGISTER8 (RCR, 0x001B); // Retry count
__GP_REGISTER_N(UIPR, 0x0028, 4); // Unreachable IP address in UDP mode
__GP_REGISTER16(UPORT, 0x002C); // Unreachable Port address in UDP mode
__GP_REGISTER8 (PHYCFGR, 0x002E); // PHY Configuration register, default value: 0b 1011 1xxx
#undef __GP_REGISTER8
#undef __GP_REGISTER16
#undef __GP_REGISTER_N
// W5500 Socket registers
// ----------------------
private:
static inline uint8_t readSn(SOCKET _s, uint16_t _addr);
static inline uint8_t writeSn(SOCKET _s, uint16_t _addr, uint8_t _data);
static inline uint16_t readSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t len);
static inline uint16_t writeSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t len);
//static const uint16_t CH_BASE = 0x0000;
//static const uint16_t CH_SIZE = 0x0000;
#define __SOCKET_REGISTER8(name, address) \
static inline void write##name(SOCKET _s, uint8_t _data) { \
writeSn(_s, address, _data); \
} \
static inline uint8_t read##name(SOCKET _s) { \
return readSn(_s, address); \
}
#if defined(REL_GR_KURUMI) || defined(REL_GR_KURUMI_PROTOTYPE)
#define __SOCKET_REGISTER16(name, address) \
static void write##name(SOCKET _s, uint16_t _data) { \
writeSn(_s, address, _data >> 8); \
writeSn(_s, address+1, _data & 0xFF); \
} \
static uint16_t read##name(SOCKET _s) { \
uint16_t res = readSn(_s, address); \
uint16_t res2 = readSn(_s,address + 1); \
res = res << 8; \
res2 = res2 & 0xFF; \
res = res | res2; \
return res; \
}
#else
#define __SOCKET_REGISTER16(name, address) \
static void write##name(SOCKET _s, uint16_t _data) { \
writeSn(_s, address, _data >> 8); \
writeSn(_s, address+1, _data & 0xFF); \
} \
static uint16_t read##name(SOCKET _s) { \
uint16_t res = readSn(_s, address); \
res = (res << 8) + readSn(_s, address + 1); \
return res; \
}
#endif
#define __SOCKET_REGISTER_N(name, address, size) \
static uint16_t write##name(SOCKET _s, uint8_t *_buff) { \
return writeSn(_s, address, _buff, size); \
} \
static uint16_t read##name(SOCKET _s, uint8_t *_buff) { \
return readSn(_s, address, _buff, size); \
}
public:
__SOCKET_REGISTER8(SnMR, 0x0000) // Mode
__SOCKET_REGISTER8(SnCR, 0x0001) // Command
__SOCKET_REGISTER8(SnIR, 0x0002) // Interrupt
__SOCKET_REGISTER8(SnSR, 0x0003) // Status
__SOCKET_REGISTER16(SnPORT, 0x0004) // Source Port
__SOCKET_REGISTER_N(SnDHAR, 0x0006, 6) // Destination Hardw Addr
__SOCKET_REGISTER_N(SnDIPR, 0x000C, 4) // Destination IP Addr
__SOCKET_REGISTER16(SnDPORT, 0x0010) // Destination Port
__SOCKET_REGISTER16(SnMSSR, 0x0012) // Max Segment Size
__SOCKET_REGISTER8(SnPROTO, 0x0014) // Protocol in IP RAW Mode
__SOCKET_REGISTER8(SnTOS, 0x0015) // IP TOS
__SOCKET_REGISTER8(SnTTL, 0x0016) // IP TTL
__SOCKET_REGISTER16(SnTX_FSR, 0x0020) // TX Free Size
__SOCKET_REGISTER16(SnTX_RD, 0x0022) // TX Read Pointer
__SOCKET_REGISTER16(SnTX_WR, 0x0024) // TX Write Pointer
__SOCKET_REGISTER16(SnRX_RSR, 0x0026) // RX Free Size
__SOCKET_REGISTER16(SnRX_RD, 0x0028) // RX Read Pointer
__SOCKET_REGISTER16(SnRX_WR, 0x002A) // RX Write Pointer (supported?)
#undef __SOCKET_REGISTER8
#undef __SOCKET_REGISTER16
#undef __SOCKET_REGISTER_N
private:
static const uint8_t RST = 7; // Reset BIT
static const int SOCKETS = 8;
public:
static const uint16_t SSIZE = 2048; // Max Tx buffer size
private:
static const uint16_t RSIZE = 2048; // Max Rx buffer size
private:
// could do inline optimizations
static inline void initSS() { pinMode(SPI_CS, OUTPUT); }
static inline void setSS() { digitalWrite(SPI_CS, LOW); }
static inline void resetSS() { digitalWrite(SPI_CS, HIGH); }
};
extern W5500Class w5500;
uint8_t W5500Class::readSn(SOCKET _s, uint16_t _addr) {
uint8_t cntl_byte = (_s<<5)+0x08;
return read(_addr, cntl_byte);
}
uint8_t W5500Class::writeSn(SOCKET _s, uint16_t _addr, uint8_t _data) {
uint8_t cntl_byte = (_s<<5)+0x0C;
return write(_addr, cntl_byte, _data);
}
uint16_t W5500Class::readSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t _len) {
uint8_t cntl_byte = (_s<<5)+0x08;
return read(_addr, cntl_byte, _buf, _len );
}
uint16_t W5500Class::writeSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t _len) {
uint8_t cntl_byte = (_s<<5)+0x0C;
return write(_addr, cntl_byte, _buf, _len);
}
void W5500Class::getGatewayIp(uint8_t *_addr) {
readGAR(_addr);
}
void W5500Class::setGatewayIp(uint8_t *_addr) {
writeGAR(_addr);
}
void W5500Class::getSubnetMask(uint8_t *_addr) {
readSUBR(_addr);
}
void W5500Class::setSubnetMask(uint8_t *_addr) {
writeSUBR(_addr);
}
void W5500Class::getMACAddress(uint8_t *_addr) {
readSHAR(_addr);
}
void W5500Class::setMACAddress(uint8_t *_addr) {
writeSHAR(_addr);
}
void W5500Class::getIPAddress(uint8_t *_addr) {
readSIPR(_addr);
}
void W5500Class::setIPAddress(uint8_t *_addr) {
writeSIPR(_addr);
}
void W5500Class::setRetransmissionTime(uint16_t _timeout) {
writeRTR(_timeout);
}
void W5500Class::setRetransmissionCount(uint8_t _retry) {
writeRCR(_retry);
}
void W5500Class::setPHYCFGR(uint8_t _val) {
writePHYCFGR(_val);
}
uint8_t W5500Class::getPHYCFGR() {
// readPHYCFGR();
return read(0x002E, 0x00);
}
void W5500Class::swReset() {
writeMR( (readMR() | 0x80) );
}
#endif

@ -1,220 +0,0 @@
/*
MsTimer2.h - Using timer2 with 1ms resolution
Javier Valencia <javiervalencia80@gmail.com>
https://github.com/PaulStoffregen/MsTimer2
History:
6/Jun/14 - V0.7 added support for Teensy 3.0 & 3.1
29/Dec/11 - V0.6 added support for ATmega32u4, AT90USB646, AT90USB1286 (paul@pjrc.com)
some improvements added by Bill Perry
note: uses timer4 on Atmega32u4
29/May/09 - V0.5 added support for Atmega1280 (thanks to Manuel Negri)
19/Mar/09 - V0.4 added support for ATmega328P (thanks to Jerome Despatis)
11/Jun/08 - V0.3
changes to allow working with different CPU frequencies
added support for ATMega128 (using timer2)
compatible with ATMega48/88/168/8
10/May/08 - V0.2 added some security tests and volatile keywords
9/May/08 - V0.1 released working on ATMEGA168 only
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <MsTimer2.h>
unsigned long MsTimer2::msecs;
void (*MsTimer2::func)();
volatile unsigned long MsTimer2::count;
volatile char MsTimer2::overflowing;
volatile unsigned int MsTimer2::tcnt2;
#if defined(__arm__) && defined(TEENSYDUINO)
static IntervalTimer itimer;
#endif
void MsTimer2::set(unsigned long ms, void (*f)()) {
float prescaler = 0.0;
if (ms == 0)
msecs = 1;
else
msecs = ms;
func = f;
#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
TIMSK2 &= ~(1<<TOIE2);
TCCR2A &= ~((1<<WGM21) | (1<<WGM20));
TCCR2B &= ~(1<<WGM22);
ASSR &= ~(1<<AS2);
TIMSK2 &= ~(1<<OCIE2A);
if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) { // prescaler set to 64
TCCR2B |= (1<<CS22);
TCCR2B &= ~((1<<CS21) | (1<<CS20));
prescaler = 64.0;
} else if (F_CPU < 1000000UL) { // prescaler set to 8
TCCR2B |= (1<<CS21);
TCCR2B &= ~((1<<CS22) | (1<<CS20));
prescaler = 8.0;
} else { // F_CPU > 16Mhz, prescaler set to 128
TCCR2B |= ((1<<CS22) | (1<<CS20));
TCCR2B &= ~(1<<CS21);
prescaler = 128.0;
}
#elif defined (__AVR_ATmega8__)
TIMSK &= ~(1<<TOIE2);
TCCR2 &= ~((1<<WGM21) | (1<<WGM20));
TIMSK &= ~(1<<OCIE2);
ASSR &= ~(1<<AS2);
if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) { // prescaler set to 64
TCCR2 |= (1<<CS22);
TCCR2 &= ~((1<<CS21) | (1<<CS20));
prescaler = 64.0;
} else if (F_CPU < 1000000UL) { // prescaler set to 8
TCCR2 |= (1<<CS21);
TCCR2 &= ~((1<<CS22) | (1<<CS20));
prescaler = 8.0;
} else { // F_CPU > 16Mhz, prescaler set to 128
TCCR2 |= ((1<<CS22) && (1<<CS20));
TCCR2 &= ~(1<<CS21);
prescaler = 128.0;
}
#elif defined (__AVR_ATmega128__)
TIMSK &= ~(1<<TOIE2);
TCCR2 &= ~((1<<WGM21) | (1<<WGM20));
TIMSK &= ~(1<<OCIE2);
if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) { // prescaler set to 64
TCCR2 |= ((1<<CS21) | (1<<CS20));
TCCR2 &= ~(1<<CS22);
prescaler = 64.0;
} else if (F_CPU < 1000000UL) { // prescaler set to 8
TCCR2 |= (1<<CS21);
TCCR2 &= ~((1<<CS22) | (1<<CS20));
prescaler = 8.0;
} else { // F_CPU > 16Mhz, prescaler set to 256
TCCR2 |= (1<<CS22);
TCCR2 &= ~((1<<CS21) | (1<<CS20));
prescaler = 256.0;
}
#elif defined (__AVR_ATmega32U4__)
TCCR4B = 0;
TCCR4A = 0;
TCCR4C = 0;
TCCR4D = 0;
TCCR4E = 0;
if (F_CPU >= 16000000L) {
TCCR4B = (1<<CS43) | (1<<PSR4);
prescaler = 128.0;
} else if (F_CPU >= 8000000L) {
TCCR4B = (1<<CS42) | (1<<CS41) | (1<<CS40) | (1<<PSR4);
prescaler = 64.0;
} else if (F_CPU >= 4000000L) {
TCCR4B = (1<<CS42) | (1<<CS41) | (1<<PSR4);
prescaler = 32.0;
} else if (F_CPU >= 2000000L) {
TCCR4B = (1<<CS42) | (1<<CS40) | (1<<PSR4);
prescaler = 16.0;
} else if (F_CPU >= 1000000L) {
TCCR4B = (1<<CS42) | (1<<PSR4);
prescaler = 8.0;
} else if (F_CPU >= 500000L) {
TCCR4B = (1<<CS41) | (1<<CS40) | (1<<PSR4);
prescaler = 4.0;
} else {
TCCR4B = (1<<CS41) | (1<<PSR4);
prescaler = 2.0;
}
tcnt2 = (int)((float)F_CPU * 0.001 / prescaler) - 1;
OCR4C = tcnt2;
return;
#elif defined(__arm__) && defined(TEENSYDUINO)
// nothing needed here
#else
#error Unsupported CPU type
#endif
tcnt2 = 256 - (int)((float)F_CPU * 0.001 / prescaler);
}
void MsTimer2::start() {
count = 0;
overflowing = 0;
#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || defined (__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
TCNT2 = tcnt2;
TIMSK2 |= (1<<TOIE2);
#elif defined (__AVR_ATmega128__)
TCNT2 = tcnt2;
TIMSK |= (1<<TOIE2);
#elif defined (__AVR_ATmega8__)
TCNT2 = tcnt2;
TIMSK |= (1<<TOIE2);
#elif defined (__AVR_ATmega32U4__)
TIFR4 = (1<<TOV4);
TCNT4 = 0;
TIMSK4 = (1<<TOIE4);
#elif defined(__arm__) && defined(TEENSYDUINO)
itimer.begin(MsTimer2::_overflow, 1000);
#endif
}
void MsTimer2::stop() {
#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || defined (__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
TIMSK2 &= ~(1<<TOIE2);
#elif defined (__AVR_ATmega128__)
TIMSK &= ~(1<<TOIE2);
#elif defined (__AVR_ATmega8__)
TIMSK &= ~(1<<TOIE2);
#elif defined (__AVR_ATmega32U4__)
TIMSK4 = 0;
#elif defined(__arm__) && defined(TEENSYDUINO)
itimer.end();
#endif
}
void MsTimer2::_overflow() {
count += 1;
if (count >= msecs && !overflowing) {
overflowing = 1;
count = count - msecs; // subtract ms to catch missed overflows
// set to 0 if you don't want this.
(*func)();
overflowing = 0;
}
}
#if defined (__AVR__)
#if defined (__AVR_ATmega32U4__)
ISR(TIMER4_OVF_vect) {
#else
ISR(TIMER2_OVF_vect) {
#endif
#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || defined (__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
TCNT2 = MsTimer2::tcnt2;
#elif defined (__AVR_ATmega128__)
TCNT2 = MsTimer2::tcnt2;
#elif defined (__AVR_ATmega8__)
TCNT2 = MsTimer2::tcnt2;
#elif defined (__AVR_ATmega32U4__)
// not necessary on 32u4's high speed timer4
#endif
MsTimer2::_overflow();
}
#endif // AVR

@ -1,25 +0,0 @@
#ifndef MsTimer2_h
#define MsTimer2_h
#ifdef __AVR__
#include <avr/interrupt.h>
#elif defined(__arm__) && defined(TEENSYDUINO)
#include <Arduino.h>
#else
#error MsTimer2 library only works on AVR architecture
#endif
namespace MsTimer2 {
extern unsigned long msecs;
extern void (*func)();
extern volatile unsigned long count;
extern volatile char overflowing;
extern volatile unsigned int tcnt2;
void set(unsigned long ms, void (*f)());
void start();
void stop();
void _overflow();
}
#endif

@ -1,7 +0,0 @@
#MsTimer2 Library#
Run a function every millisecond.
http://www.pjrc.com/teensy/td_libs_MsTimer2.html
Originally written by Javier Valencia

@ -1,36 +0,0 @@
/*
MsTimer2 is a small and very easy to use library to interface Timer2 with
humans. It's called MsTimer2 because it "hardcodes" a resolution of 1
millisecond on timer2
For Details see: http://www.arduino.cc/playground/Main/MsTimer2
*/
#include <MsTimer2.h>
// Switch on LED on and off each half second
#if ARDUINO >= 100
const int led_pin = LED_BUILTIN; // 1.0 built in LED pin var
#else
const int led_pin = 13; // default to pin 13
#endif
void flash()
{
static boolean output = HIGH;
digitalWrite(led_pin, output);
output = !output;
}
void setup()
{
pinMode(led_pin, OUTPUT);
MsTimer2::set(500, flash); // 500ms period
MsTimer2::start();
}
void loop()
{
}

@ -1,4 +0,0 @@
MsTimer2 KEYWORD1
set KEYWORD2
start KEYWORD2
stop KEYWORD2

@ -1,25 +0,0 @@
{
"name": "MsTimer2",
"keywords": "timer, callback",
"description": "MsTimer2 is a small and very easy to use library to interface Timer2 with humans. It's called MsTimer2 because it \"hardcodes\" a resolution of 1 millisecond on timer2.",
"repository": {
"type": "git",
"url": "https://github.com/PaulStoffregen/MsTimer2.git"
},
"authors": [{
"name": "Javier Valencia",
"email": "javiervalencia80@gmail.com",
"url": "http://www.pjrc.com/teensy/td_libs_MsTimer2.html"
}, {
"name": "Paul Stoffregen",
"url": "https://www.pjrc.com/about/",
"maintainer": true
}],
"frameworks": [
"arduino"
],
"platforms": [
"atmelavr",
"teensy"
]
}

@ -1,10 +0,0 @@
name=MsTimer2
version=1.1
author=Javier Valencia
maintainer=Paul Stoffregen
sentence=Run an interrupt function using Timer2
paragraph=
category=Timing
url=http://playground.arduino.cc/Main/MsTimer2
architectures=*
Loading…
Cancel
Save